Eghbali Niloufar, Klochko Chad, Razoky Perra, Chintalapati Prateek, Jawad Efan, Mahdi Zaid, Craig Joseph, Ghassemi Mohammad M
Michigan State University, East Lansing, MI, USA.
Henry Ford Hospital, Detroit, MI, USA.
AMIA Jt Summits Transl Sci Proc. 2024 May 31;2024:135-144. eCollection 2024.
Radiology Imaging plays a pivotal role in medical diagnostics, providing clinicians with insights into patient health and guiding the next steps in treatment. The true value of a radiological image lies in the accuracy of its accompanying report. To ensure the reliability of these reports, they are often cross-referenced with operative findings. The conventional method of manually comparing radiology and operative reports is labor-intensive and demands specialized knowledge. This study explores the potential of a Large Language Model (LLM) to simplify the radiology evaluation process by automatically extracting pertinent details from these reports, focusing especially on the shoulder's primary anatomical structures. A fine-tuned LLM identifies mentions of the supraspinatus tendon, infraspinatus tendon, subscapularis tendon, biceps tendon, and glenoid labrum in lengthy radiology and operative documents. Initial findings emphasize the model's capability to pinpoint relevant data, suggesting a transformative approach to the typical evaluation methods in radiology.
放射成像在医学诊断中起着关键作用,为临床医生提供有关患者健康状况的见解,并指导后续治疗步骤。放射图像的真正价值在于其附带报告的准确性。为确保这些报告的可靠性,它们通常会与手术结果进行交叉参考。传统的手动比较放射学报告和手术报告的方法劳动强度大,且需要专业知识。本研究探讨了大语言模型(LLM)通过自动从这些报告中提取相关细节来简化放射学评估过程的潜力,特别关注肩部的主要解剖结构。一个经过微调的大语言模型能够在冗长的放射学和手术文档中识别出冈上肌腱、冈下肌腱、肩胛下肌腱、二头肌肌腱和盂唇的相关描述。初步研究结果强调了该模型精确找出相关数据的能力,这表明一种变革性方法可应用于放射学的典型评估方法。