Suppr超能文献

提高放射学中的自动化质量控制:利用大语言模型提取放射学报告和手术报告中的相关发现。

Improving Automating Quality Control in Radiology: Leveraging Large Language Models to Extract Correlative Findings in Radiology and Operative Reports.

作者信息

Eghbali Niloufar, Klochko Chad, Razoky Perra, Chintalapati Prateek, Jawad Efan, Mahdi Zaid, Craig Joseph, Ghassemi Mohammad M

机构信息

Michigan State University, East Lansing, MI, USA.

Henry Ford Hospital, Detroit, MI, USA.

出版信息

AMIA Jt Summits Transl Sci Proc. 2024 May 31;2024:135-144. eCollection 2024.

Abstract

Radiology Imaging plays a pivotal role in medical diagnostics, providing clinicians with insights into patient health and guiding the next steps in treatment. The true value of a radiological image lies in the accuracy of its accompanying report. To ensure the reliability of these reports, they are often cross-referenced with operative findings. The conventional method of manually comparing radiology and operative reports is labor-intensive and demands specialized knowledge. This study explores the potential of a Large Language Model (LLM) to simplify the radiology evaluation process by automatically extracting pertinent details from these reports, focusing especially on the shoulder's primary anatomical structures. A fine-tuned LLM identifies mentions of the supraspinatus tendon, infraspinatus tendon, subscapularis tendon, biceps tendon, and glenoid labrum in lengthy radiology and operative documents. Initial findings emphasize the model's capability to pinpoint relevant data, suggesting a transformative approach to the typical evaluation methods in radiology.

摘要

放射成像在医学诊断中起着关键作用,为临床医生提供有关患者健康状况的见解,并指导后续治疗步骤。放射图像的真正价值在于其附带报告的准确性。为确保这些报告的可靠性,它们通常会与手术结果进行交叉参考。传统的手动比较放射学报告和手术报告的方法劳动强度大,且需要专业知识。本研究探讨了大语言模型(LLM)通过自动从这些报告中提取相关细节来简化放射学评估过程的潜力,特别关注肩部的主要解剖结构。一个经过微调的大语言模型能够在冗长的放射学和手术文档中识别出冈上肌腱、冈下肌腱、肩胛下肌腱、二头肌肌腱和盂唇的相关描述。初步研究结果强调了该模型精确找出相关数据的能力,这表明一种变革性方法可应用于放射学的典型评估方法。

相似文献

4
Information extraction from multi-institutional radiology reports.
Artif Intell Med. 2016 Jan;66:29-39. doi: 10.1016/j.artmed.2015.09.007. Epub 2015 Oct 3.
5
Generating colloquial radiology reports with large language models.
J Am Med Inform Assoc. 2024 Nov 1;31(11):2660-2667. doi: 10.1093/jamia/ocae223.
6
MRI findings associated with luxatio erecta humeri.
Skeletal Radiol. 2010 Jan;39(1):27-33. doi: 10.1007/s00256-009-0786-7.
7
Evaluation of large language models performance against humans for summarizing MRI knee radiology reports: A feasibility study.
Int J Med Inform. 2024 Jul;187:105443. doi: 10.1016/j.ijmedinf.2024.105443. Epub 2024 Apr 4.
9
Anatomical basics, variations, and degenerative changes of the shoulder joint and shoulder girdle.
Eur J Radiol. 2000 Aug;35(2):88-102. doi: 10.1016/s0720-048x(00)00225-4.
10
From technical to understandable: Artificial Intelligence Large Language Models improve the readability of knee radiology reports.
Knee Surg Sports Traumatol Arthrosc. 2024 May;32(5):1077-1086. doi: 10.1002/ksa.12133. Epub 2024 Mar 15.

本文引用的文献

1
Automation of Protocoling Advanced MSK Examinations Using Natural Language Processing Techniques.
AMIA Jt Summits Transl Sci Proc. 2023 Jun 16;2023:118-127. eCollection 2023.
2
Application of Deep Learning in Generating Structured Radiology Reports: A Transformer-Based Technique.
J Digit Imaging. 2023 Feb;36(1):80-90. doi: 10.1007/s10278-022-00692-x. Epub 2022 Aug 24.
4
Privacy and artificial intelligence: challenges for protecting health information in a new era.
BMC Med Ethics. 2021 Sep 15;22(1):122. doi: 10.1186/s12910-021-00687-3.
5
The Evolving Roles of MRI and Ultrasound in First-Line Imaging of Rotator Cuff Injuries.
AJR Am J Roentgenol. 2021 Dec;217(6):1390-1400. doi: 10.2214/AJR.21.25606. Epub 2021 Jun 23.
6
Automated Radiology-Arthroscopy Correlation of Knee Meniscal Tears Using Natural Language Processing Algorithms.
Acad Radiol. 2022 Apr;29(4):479-487. doi: 10.1016/j.acra.2021.01.017. Epub 2021 Feb 11.
8
Automated Radiology-Operative Note Communication Tool; Closing the Loop in Musculoskeletal Imaging.
Acad Radiol. 2018 Feb;25(2):244-249. doi: 10.1016/j.acra.2017.08.016. Epub 2017 Nov 6.
9
KneeTex: an ontology-driven system for information extraction from MRI reports.
J Biomed Semantics. 2015 Sep 7;6:34. doi: 10.1186/s13326-015-0033-1. eCollection 2015.
10
Low accuracy of interpretation of rotator cuff MRI in patients with osteoarthritis.
Acta Orthop. 2013 Oct;84(5):479-82. doi: 10.3109/17453674.2013.850012. Epub 2013 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验