Suppr超能文献

深度学习在生成结构化放射学报告中的应用:基于转换器的技术。

Application of Deep Learning in Generating Structured Radiology Reports: A Transformer-Based Technique.

机构信息

Department of Computer Science and Engineering and IT, Shiraz University, Shiraz, Iran.

Shiraz University of Medical Sciences, Shiraz, Iran.

出版信息

J Digit Imaging. 2023 Feb;36(1):80-90. doi: 10.1007/s10278-022-00692-x. Epub 2022 Aug 24.

Abstract

Since radiology reports needed for clinical practice and research are written and stored in free-text narrations, extraction of relative information for further analysis is difficult. In these circumstances, natural language processing (NLP) techniques can facilitate automatic information extraction and transformation of free-text formats to structured data. In recent years, deep learning (DL)-based models have been adapted for NLP experiments with promising results. Despite the significant potential of DL models based on artificial neural networks (ANN) and convolutional neural networks (CNN), the models face some limitations to implement in clinical practice. Transformers, another new DL architecture, have been increasingly applied to improve the process. Therefore, in this study, we propose a transformer-based fine-grained named entity recognition (NER) architecture for clinical information extraction. We collected 88 abdominopelvic sonography reports in free-text formats and annotated them based on our developed information schema. The text-to-text transfer transformer model (T5) and Scifive, a pre-trained domain-specific adaptation of the T5 model, were applied for fine-tuning to extract entities and relations and transform the input into a structured format. Our transformer-based model in this study outperformed previously applied approaches such as ANN and CNN models based on ROUGE-1, ROUGE-2, ROUGE-L, and BLEU scores of 0.816, 0.668, 0.528, and 0.743, respectively, while providing an interpretable structured report.

摘要

由于临床实践和研究所需的放射学报告是以自由文本叙述的形式编写和存储的,因此难以提取相关信息进行进一步分析。在这种情况下,自然语言处理 (NLP) 技术可以方便地自动提取信息,并将自由文本格式转换为结构化数据。近年来,基于深度学习 (DL) 的模型已被应用于 NLP 实验,并取得了有希望的结果。尽管基于人工神经网络 (ANN) 和卷积神经网络 (CNN) 的 DL 模型具有很大的潜力,但这些模型在实际应用中仍面临一些局限性。另一种新的深度学习架构——转换器,已被越来越多地应用于改进这一过程。因此,在本研究中,我们提出了一种基于转换器的细粒度命名实体识别 (NER) 架构,用于从临床信息中提取实体。我们收集了 88 份以自由文本格式编写的腹部和盆腔超声报告,并根据我们开发的信息模式对其进行了标注。我们使用了文本到文本转移转换器模型 (T5) 和 Scifive(T5 模型的预训练特定领域自适应模型)进行微调,以提取实体和关系,并将输入转换为结构化格式。我们的研究中的基于转换器的模型在 ROUGE-1、ROUGE-2、ROUGE-L 和 BLEU 分数分别为 0.816、0.668、0.528 和 0.743 的情况下,优于以前应用的方法,如 ANN 和 CNN 模型,同时提供了可解释的结构化报告。

相似文献

1
Application of Deep Learning in Generating Structured Radiology Reports: A Transformer-Based Technique.
J Digit Imaging. 2023 Feb;36(1):80-90. doi: 10.1007/s10278-022-00692-x. Epub 2022 Aug 24.
2
Reshaping free-text radiology notes into structured reports with generative question answering transformers.
Artif Intell Med. 2024 Aug;154:102924. doi: 10.1016/j.artmed.2024.102924. Epub 2024 Jun 26.
3
Extracting comprehensive clinical information for breast cancer using deep learning methods.
Int J Med Inform. 2019 Dec;132:103985. doi: 10.1016/j.ijmedinf.2019.103985. Epub 2019 Oct 2.
4
Transformers for extracting breast cancer information from Spanish clinical narratives.
Artif Intell Med. 2023 Sep;143:102625. doi: 10.1016/j.artmed.2023.102625. Epub 2023 Jul 13.
7
Transformers-sklearn: a toolkit for medical language understanding with transformer-based models.
BMC Med Inform Decis Mak. 2021 Jul 30;21(Suppl 2):90. doi: 10.1186/s12911-021-01459-0.
8
Deep learning in generating radiology reports: A survey.
Artif Intell Med. 2020 Jun;106:101878. doi: 10.1016/j.artmed.2020.101878. Epub 2020 May 15.

本文引用的文献

1
Named Entity Recognition and Relation Detection for Biomedical Information Extraction.
Front Cell Dev Biol. 2020 Aug 28;8:673. doi: 10.3389/fcell.2020.00673. eCollection 2020.
2
BERT-based Ranking for Biomedical Entity Normalization.
AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:269-277. eCollection 2020.
3
Deep learning in generating radiology reports: A survey.
Artif Intell Med. 2020 Jun;106:101878. doi: 10.1016/j.artmed.2020.101878. Epub 2020 May 15.
4
Deep Learning for Natural Language Processing in Radiology-Fundamentals and a Systematic Review.
J Am Coll Radiol. 2020 May;17(5):639-648. doi: 10.1016/j.jacr.2019.12.026. Epub 2020 Jan 28.
5
BioBERT: a pre-trained biomedical language representation model for biomedical text mining.
Bioinformatics. 2020 Feb 15;36(4):1234-1240. doi: 10.1093/bioinformatics/btz682.
6
Enhancing clinical concept extraction with contextual embeddings.
J Am Med Inform Assoc. 2019 Nov 1;26(11):1297-1304. doi: 10.1093/jamia/ocz096.
7
Toward Complete Structured Information Extraction from Radiology Reports Using Machine Learning.
J Digit Imaging. 2019 Aug;32(4):554-564. doi: 10.1007/s10278-019-00234-y.
8
Automatic Disease Annotation From Radiology Reports Using Artificial Intelligence Implemented by a Recurrent Neural Network.
AJR Am J Roentgenol. 2019 Apr;212(4):734-740. doi: 10.2214/AJR.18.19869. Epub 2019 Jan 30.
9
A clinical text classification paradigm using weak supervision and deep representation.
BMC Med Inform Decis Mak. 2019 Jan 7;19(1):1. doi: 10.1186/s12911-018-0723-6.
10
Use of Machine Learning to Identify Follow-Up Recommendations in Radiology Reports.
J Am Coll Radiol. 2019 Mar;16(3):336-343. doi: 10.1016/j.jacr.2018.10.020. Epub 2018 Dec 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验