Eghbali Niloufar, Siegal Daniel, Klochko Chad, Ghassemi Mohammad M
Michigan State University, East Lansing, MI, USA.
Henry Ford Hospital, Detroit, MI, USA.
AMIA Jt Summits Transl Sci Proc. 2023 Jun 16;2023:118-127. eCollection 2023.
Imaging examination selection and protocoling are vital parts of the radiology workflow, ensuring that the most suitable exam is done for the clinical question while minimizing the patient's radiation exposure. In this study, we aimed to develop an automated model for the revision of radiology examination requests using natural language processing techniques to improve the efficiency of pre-imaging radiology workflow. We extracted Musculoskeletal (MSK) magnetic resonance imaging (MRI) exam order from the radiology information system at Henry Ford Hospital in Detroit, Michigan. The pretrained transformer, "DistilBERT" was adjusted to create a vector representation of the free text within the orders while maintaining the meaning of the words. Then, a logistic regression-based classifier was trained to identify orders that required additional review. The model achieved 83% accuracy and had an area under the curve of 0.87.
影像检查的选择和方案制定是放射科工作流程的重要组成部分,可确保针对临床问题进行最合适的检查,同时将患者的辐射暴露降至最低。在本研究中,我们旨在开发一种自动化模型,利用自然语言处理技术修订放射科检查申请,以提高成像前放射科工作流程的效率。我们从密歇根州底特律市亨利·福特医院的放射信息系统中提取了肌肉骨骼(MSK)磁共振成像(MRI)检查订单。对预训练的变压器模型“DistilBERT”进行调整,以创建订单中自由文本的向量表示,同时保留单词的含义。然后,训练基于逻辑回归的分类器来识别需要额外审查的订单。该模型的准确率达到83%,曲线下面积为0.87。