Suppr超能文献

使用自然语言处理技术实现高级肌肉骨骼检查的协议自动化

Automation of Protocoling Advanced MSK Examinations Using Natural Language Processing Techniques.

作者信息

Eghbali Niloufar, Siegal Daniel, Klochko Chad, Ghassemi Mohammad M

机构信息

Michigan State University, East Lansing, MI, USA.

Henry Ford Hospital, Detroit, MI, USA.

出版信息

AMIA Jt Summits Transl Sci Proc. 2023 Jun 16;2023:118-127. eCollection 2023.

Abstract

Imaging examination selection and protocoling are vital parts of the radiology workflow, ensuring that the most suitable exam is done for the clinical question while minimizing the patient's radiation exposure. In this study, we aimed to develop an automated model for the revision of radiology examination requests using natural language processing techniques to improve the efficiency of pre-imaging radiology workflow. We extracted Musculoskeletal (MSK) magnetic resonance imaging (MRI) exam order from the radiology information system at Henry Ford Hospital in Detroit, Michigan. The pretrained transformer, "DistilBERT" was adjusted to create a vector representation of the free text within the orders while maintaining the meaning of the words. Then, a logistic regression-based classifier was trained to identify orders that required additional review. The model achieved 83% accuracy and had an area under the curve of 0.87.

摘要

影像检查的选择和方案制定是放射科工作流程的重要组成部分,可确保针对临床问题进行最合适的检查,同时将患者的辐射暴露降至最低。在本研究中,我们旨在开发一种自动化模型,利用自然语言处理技术修订放射科检查申请,以提高成像前放射科工作流程的效率。我们从密歇根州底特律市亨利·福特医院的放射信息系统中提取了肌肉骨骼(MSK)磁共振成像(MRI)检查订单。对预训练的变压器模型“DistilBERT”进行调整,以创建订单中自由文本的向量表示,同时保留单词的含义。然后,训练基于逻辑回归的分类器来识别需要额外审查的订单。该模型的准确率达到83%,曲线下面积为0.87。

相似文献

1
Automation of Protocoling Advanced MSK Examinations Using Natural Language Processing Techniques.
AMIA Jt Summits Transl Sci Proc. 2023 Jun 16;2023:118-127. eCollection 2023.
3
Development and web deployment of an automated neuroradiology MRI protocoling tool with natural language processing.
BMC Med Inform Decis Mak. 2021 Jul 12;21(1):213. doi: 10.1186/s12911-021-01574-y.
4
Automated Protocoling for MRI Exams-Challenges and Solutions.
J Digit Imaging. 2022 Oct;35(5):1293-1302. doi: 10.1007/s10278-022-00610-1. Epub 2022 Aug 30.
5
Implementation of an Institution-Wide Rules-Based Automated CT Protocoling System.
AJR Am J Roentgenol. 2024 Apr;222(4):e2329806. doi: 10.2214/AJR.23.29806. Epub 2024 Jan 17.
6
Paperless protocoling of CT and MRI requests at an outpatient imaging center.
J Digit Imaging. 2010 Apr;23(2):203-10. doi: 10.1007/s10278-008-9168-2. Epub 2008 Nov 22.
7
Machine Learning for Automation of Radiology Protocols for Quality and Efficiency Improvement.
J Am Coll Radiol. 2020 Sep;17(9):1149-1158. doi: 10.1016/j.jacr.2020.03.012. Epub 2020 Apr 9.
9
A Natural Language Processing-based Model to Automate MRI Brain Protocol Selection and Prioritization.
Acad Radiol. 2017 Feb;24(2):160-166. doi: 10.1016/j.acra.2016.09.013. Epub 2016 Nov 23.
10
Order Entry Protocols Are an Amenable Target for Workflow Automation.
J Am Coll Radiol. 2018 Jun;15(6):854-858. doi: 10.1016/j.jacr.2018.02.003. Epub 2018 Apr 22.

引用本文的文献

1
Advancing clinical MRI exams with artificial intelligence: Japan's contributions and future prospects.
Jpn J Radiol. 2025 Mar;43(3):355-364. doi: 10.1007/s11604-024-01689-y. Epub 2024 Nov 16.
2
The Fine-Tuned Large Language Model for Extracting the Progressive Bone Metastasis from Unstructured Radiology Reports.
J Imaging Inform Med. 2025 Apr;38(2):865-872. doi: 10.1007/s10278-024-01242-3. Epub 2024 Aug 26.

本文引用的文献

1
AMMU: A survey of transformer-based biomedical pretrained language models.
J Biomed Inform. 2022 Feb;126:103982. doi: 10.1016/j.jbi.2021.103982. Epub 2021 Dec 31.
2
Automatic medical protocol classification using machine learning approaches.
Comput Methods Programs Biomed. 2021 Mar;200:105939. doi: 10.1016/j.cmpb.2021.105939. Epub 2021 Jan 16.
3
Artificial Intelligence Applications for Workflow, Process Optimization and Predictive Analytics.
Neuroimaging Clin N Am. 2020 Nov;30(4):e1-e15. doi: 10.1016/j.nic.2020.08.008.
4
A Social Media Study on the Effects of Psychiatric Medication Use.
Proc Int AAAI Conf Weblogs Soc Media. 2019 Jun 7;13:440-451.
5
Machine Learning for Automation of Radiology Protocols for Quality and Efficiency Improvement.
J Am Coll Radiol. 2020 Sep;17(9):1149-1158. doi: 10.1016/j.jacr.2020.03.012. Epub 2020 Apr 9.
6
Magnitude and financial implications of inappropriate diagnostic imaging for three common clinical conditions.
Int J Qual Health Care. 2019 Nov 30;31(9):691-697. doi: 10.1093/intqhc/mzy248.
8
Using machine learning for sequence-level automated MRI protocol selection in neuroradiology.
J Am Med Inform Assoc. 2018 May 1;25(5):568-571. doi: 10.1093/jamia/ocx125.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验