Suppr超能文献

重编程外泌体用于免疫重塑光动力疗法治疗非小细胞肺癌

Reprogramming exosomes for immunity-remodeled photodynamic therapy against non-small cell lung cancer.

作者信息

Guo Jiao, Zhao Wei, Xiao Xinyu, Liu Shanshan, Liu Liang, Zhang La, Li Lu, Li Zhenghang, Li Zhi, Xu Mengxia, Peng Qiling, Wang Jianwei, Wei Yuxian, Jiang Ning

机构信息

School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China.

Department of Plastic and Maxillofacial Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.

出版信息

Bioact Mater. 2024 May 21;39:206-223. doi: 10.1016/j.bioactmat.2024.05.030. eCollection 2024 Sep.

Abstract

Traditional treatments against advanced non-small cell lung cancer (NSCLC) with high morbidity and mortality continue to be dissatisfactory. Given this situation, there is an urgent requirement for alternative modalities that provide lower invasiveness, superior clinical effectiveness, and minimal adverse effects. The combination of photodynamic therapy (PDT) and immunotherapy gradually become a promising approach for high-grade malignant NSCLC. Nevertheless, owing to the absence of precise drug delivery techniques as well as the hypoxic and immunosuppressive characteristics of the tumor microenvironment (TME), the efficacy of this combination therapy approach is less than ideal. In this study, we construct a novel nanoplatform that indocyanine green (ICG), a photosensitizer, loads into hollow manganese dioxide (MnO) nanospheres (NPs) (ICG@MnO), and then encapsulated in PD-L1 monoclonal antibodies (anti-PD-L1) reprogrammed exosomes (named ICG@MnO@Exo-anti-PD-L1), to effectively modulate the TME to oppose NSCLC by the synergy of PDT and immunotherapy modalities. The ICG@MnO@Exo-anti-PD-L1 NPs are precisely delivered to the tumor sites by targeting specially PD-L1 highly expressed cancer cells to controllably release anti-PD-L1 in the acidic TME, thereby activating T cell response. Subsequently, upon endocytic uptake by cancer cells, MnO catalyzes the conversion of HO to O, thereby alleviating tumor hypoxia. Meanwhile, ICG further utilizes O to produce singlet oxygen (O) to kill tumor cells under 808 nm near-infrared (NIR) irradiation. Furthermore, a high level of intratumoral HO reduces MnO to Mn, which remodels the immune microenvironment by polarizing macrophages from M2 to M1, further driving T cells. Taken together, the current study suggests that the ICG@MnO@Exo-anti-PD-L1 NPs could act as a novel drug delivery platform for achieving multimodal therapy in treating NSCLC.

摘要

针对发病率和死亡率高的晚期非小细胞肺癌(NSCLC)的传统治疗方法仍然不尽人意。鉴于这种情况,迫切需要具有更低侵入性、更高临床疗效和最小副作用的替代治疗方式。光动力疗法(PDT)和免疫疗法的联合逐渐成为治疗高级别恶性NSCLC的一种有前景的方法。然而,由于缺乏精确的药物递送技术以及肿瘤微环境(TME)的缺氧和免疫抑制特性,这种联合治疗方法的疗效并不理想。在本研究中,我们构建了一种新型纳米平台,将光敏剂吲哚菁绿(ICG)负载到中空二氧化锰(MnO)纳米球(NPs)(ICG@MnO)中,然后封装在经程序性死亡受体配体1(PD-L1)单克隆抗体(抗PD-L1)重编程的外泌体中(命名为ICG@MnO@Exo-抗PD-L1),以通过PDT和免疫疗法的协同作用有效调节TME来对抗NSCLC。ICG@MnO@Exo-抗PD-L1 NPs通过靶向特异性高表达PD-L1的癌细胞精确递送至肿瘤部位,在酸性TME中可控释放抗PD-L1,从而激活T细胞反应。随后,癌细胞内吞摄取后,MnO催化过氧化氢(HO)转化为氧气(O),从而缓解肿瘤缺氧。同时,ICG进一步利用O产生单线态氧(O),在808纳米近红外(NIR)照射下杀死肿瘤细胞。此外,肿瘤内高水平的HO将MnO还原为锰,通过将巨噬细胞从M2极化为M1来重塑免疫微环境,进一步驱动T细胞。综上所述,当前研究表明ICG@MnO@Exo-抗PD-L1 NPs可作为一种新型药物递送平台,用于实现NSCLC的多模态治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819a/11141154/86d413c45a0a/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验