Guo Nanxi, Vargas Juan, Reynoso Samantha, Fritz Douglas, Krishna Revanth, Wang Chuangqi, Zhang Fan
Biostatistics and Informatics PhD Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States.
Department of Biomedical Informatics, Center for Health Artificial Intelligence, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States.
Bioinform Adv. 2024 May 29;4(1):vbae064. doi: 10.1093/bioadv/vbae064. eCollection 2024.
The recent spatial transcriptomics (ST) technologies have enabled characterization of gene expression patterns and spatial information, advancing our understanding of cell lineages within diseased tissues. Several analytical approaches have been proposed for ST data, but effectively utilizing spatial information to unveil the shared variation with gene expression remains a challenge.
We introduce STew, a Spatial Transcriptomic multi-viEW representation learning method, to jointly analyze spatial information and gene expression in a scalable manner, followed by a data-driven statistical framework to measure the goodness of model fit. Through benchmarking using human dorsolateral prefrontal cortex and mouse main olfactory bulb data with true manual annotations, STew achieved superior performance in both clustering accuracy and continuity of identified spatial domains compared with other methods. STew is also robust to generate consistent results insensitive to model parameters, including sparsity constraints. We next applied STew to various ST data acquired from 10× Visium, Slide-seqV2, and 10× Xenium, encompassing single-cell and multi-cellular resolution ST technologies, which revealed spatially informed cell type clusters and biologically meaningful axes. In particular, we identified a proinflammatory fibroblast spatial niche using ST data from psoriatic skins. Moreover, STew scales almost linearly with the number of spatial locations, guaranteeing its applicability to datasets with thousands of spatial locations to capture disease-relevant niches in complex tissues.
Source code and the R software tool STew are available from github.com/fanzhanglab/STew.
最近的空间转录组学(ST)技术能够表征基因表达模式和空间信息,加深了我们对患病组织内细胞谱系的理解。针对ST数据已经提出了几种分析方法,但有效利用空间信息来揭示与基因表达的共同变异仍然是一个挑战。
我们引入了STew,一种空间转录组多视角表示学习方法,以可扩展的方式联合分析空间信息和基因表达,随后是一个数据驱动的统计框架来衡量模型拟合的优度。通过使用具有真实手动注释的人类背外侧前额叶皮层和小鼠主嗅球数据进行基准测试,与其他方法相比,STew在聚类准确性和识别出的空间域的连续性方面均取得了卓越的性能。STew在生成对包括稀疏性约束在内的模型参数不敏感的一致结果方面也很稳健。接下来,我们将STew应用于从10× Visium、Slide-seqV2和10× Xenium获取的各种ST数据,涵盖单细胞和多细胞分辨率的ST技术,这些数据揭示了具有空间信息的细胞类型簇和生物学上有意义的轴。特别是,我们使用银屑病皮肤的ST数据确定了一个促炎成纤维细胞的空间生态位。此外,STew几乎与空间位置的数量呈线性扩展,确保其适用于具有数千个空间位置的数据集,以捕获复杂组织中与疾病相关的生态位。
源代码和R软件工具STew可从github.com/fanzhanglab/STew获得。