文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

健康和患病组织中时空轨迹和细胞-细胞相互作用的稳健映射。

Robust mapping of spatiotemporal trajectories and cell-cell interactions in healthy and diseased tissues.

机构信息

Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.

School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.

出版信息

Nat Commun. 2023 Nov 25;14(1):7739. doi: 10.1038/s41467-023-43120-6.


DOI:10.1038/s41467-023-43120-6
PMID:38007580
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10676408/
Abstract

Spatial transcriptomics (ST) technologies generate multiple data types from biological samples, namely gene expression, physical distance between data points, and/or tissue morphology. Here we developed three computational-statistical algorithms that integrate all three data types to advance understanding of cellular processes. First, we present a spatial graph-based method, pseudo-time-space (PSTS), to model and uncover relationships between transcriptional states of cells across tissues undergoing dynamic change (e.g. neurodevelopment, brain injury and/or microglia activation, and cancer progression). We further developed a spatially-constrained two-level permutation (SCTP) test to study cell-cell interaction, finding highly interactive tissue regions across thousands of ligand-receptor pairs with markedly reduced false discovery rates. Finally, we present a spatial graph-based imputation method with neural network (stSME), to correct for technical noise/dropout and increase ST data coverage. Together, the algorithms that we developed, implemented in the comprehensive and fast stLearn software, allow for robust interrogation of biological processes within healthy and diseased tissues.

摘要

空间转录组学 (ST) 技术从生物样本中生成多种数据类型,即基因表达、数据点之间的物理距离和/或组织形态。在这里,我们开发了三种计算统计算法,将这三种数据类型整合在一起,以推进对细胞过程的理解。首先,我们提出了一种基于空间图的方法,即伪时间 - 空间 (PSTS),用于对经历动态变化(例如神经发育、脑损伤和/或小胶质细胞激活以及癌症进展)的组织中细胞的转录状态进行建模和揭示它们之间的关系。我们进一步开发了一种受空间约束的两级置换 (SCTP) 检验方法来研究细胞间相互作用,发现了数千对配体 - 受体对中具有显著降低的假发现率的高度相互作用的组织区域。最后,我们提出了一种基于空间图的神经网络 (stSME) 插补方法,以纠正技术噪声/缺失并增加 ST 数据的覆盖范围。总之,我们开发的算法在全面快速的 stLearn 软件中实现,允许对健康和患病组织中的生物过程进行稳健的探究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f86/10676408/164c39df48ff/41467_2023_43120_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f86/10676408/f560bbfaf3ec/41467_2023_43120_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f86/10676408/c9f91d7bc250/41467_2023_43120_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f86/10676408/eafd49b27188/41467_2023_43120_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f86/10676408/c5d753456eac/41467_2023_43120_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f86/10676408/64f005aaa3e3/41467_2023_43120_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f86/10676408/164c39df48ff/41467_2023_43120_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f86/10676408/f560bbfaf3ec/41467_2023_43120_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f86/10676408/c9f91d7bc250/41467_2023_43120_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f86/10676408/eafd49b27188/41467_2023_43120_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f86/10676408/c5d753456eac/41467_2023_43120_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f86/10676408/64f005aaa3e3/41467_2023_43120_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f86/10676408/164c39df48ff/41467_2023_43120_Fig6_HTML.jpg

相似文献

[1]
Robust mapping of spatiotemporal trajectories and cell-cell interactions in healthy and diseased tissues.

Nat Commun. 2023-11-25

[2]
STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering.

Comput Biol Med. 2023-11

[3]
TENET: Triple-enhancement based graph neural network for cell-cell interaction network reconstruction from spatial transcriptomics.

J Mol Biol. 2024-5-1

[4]
STGAT: Graph attention networks for deconvolving spatial transcriptomics data.

Comput Methods Programs Biomed. 2024-12

[5]
STCGAN: a novel cycle-consistent generative adversarial network for spatial transcriptomics cellular deconvolution.

Brief Bioinform. 2024-11-22

[6]
GAADE: identification spatially variable genes based on adaptive graph attention network.

Brief Bioinform. 2024-11-22

[7]
SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information.

Bioinformatics. 2022-10-31

[8]
Impeller: a path-based heterogeneous graph learning method for spatial transcriptomic data imputation.

Bioinformatics. 2024-6-3

[9]
SpaInGNN: Enhanced clustering and integration of spatial transcriptomics based on refined graph neural networks.

Methods. 2025-1

[10]
Deciphering cell-cell communication at single-cell resolution for spatial transcriptomics with subgraph-based graph attention network.

Nat Commun. 2024-8-18

引用本文的文献

[1]
Spatial colocalization and molecular crosstalk of myofibroblastic CAFs and tumor cells shape lymph node metastasis in oral squamous cell carcinoma.

PLoS Genet. 2025-9-4

[2]
stImage: a versatile framework for optimizing spatial transcriptomic analysis through customizable deep histology and location informed integration.

Brief Bioinform. 2025-8-31

[3]
ST-deconv: an accurate deconvolution approach for spatial transcriptome data utilizing self-encoding and contrastive learning.

NAR Genom Bioinform. 2025-8-27

[4]
Spatiotemporal Dynamics of Central Nervous System Diseases: Advancing Translational Neuropathology via Single-Cell and Spatial Multiomics.

MedComm (2020). 2025-8-19

[5]
Finding spatially variable ligand-receptor interactions with functional support from downstream genes.

Nat Commun. 2025-8-21

[6]
Inferring causal trajectories from spatial transcriptomics using CASCAT.

Nucleic Acids Res. 2025-8-11

[7]
Evaluating Integrative Strategies for Incorporating Phenotypic Features in Spatial Transcriptomics.

ArXiv. 2025-7-29

[8]
Integrating 12 Spatial and Single Cell Technologies to Characterise Tumour Neighbourhoods and Cellular Interactions in three Skin Cancer Types.

bioRxiv. 2025-7-28

[9]
Thor: a platform for cell-level investigation of spatial transcriptomics and histology.

Nat Commun. 2025-8-5

[10]
SpaSEG: unsupervised deep learning for multi-task analysis of spatially resolved transcriptomics.

Genome Biol. 2025-7-29

本文引用的文献

[1]
Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST.

Nat Commun. 2023-3-1

[2]
Inferring a spatial code of cell-cell interactions across a whole animal body.

PLoS Comput Biol. 2022-11

[3]
Modeling intercellular communication in tissues using spatial graphs of cells.

Nat Biotechnol. 2023-3

[4]
A robust experimental and computational analysis framework at multiple resolutions, modalities and coverages.

Front Immunol. 2022

[5]
Knowledge-graph-based cell-cell communication inference for spatially resolved transcriptomic data with SpaTalk.

Nat Commun. 2022-7-30

[6]
Identifying multicellular spatiotemporal organization of cells with SpaceFlow.

Nat Commun. 2022-7-14

[7]
Alignment and integration of spatial transcriptomics data.

Nat Methods. 2022-5

[8]
DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data.

Nat Biotechnol. 2022-10

[9]
Spatial components of molecular tissue biology.

Nat Biotechnol. 2022-3

[10]
Squidpy: a scalable framework for spatial omics analysis.

Nat Methods. 2022-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索