Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.
School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
Nat Commun. 2023 Nov 25;14(1):7739. doi: 10.1038/s41467-023-43120-6.
Spatial transcriptomics (ST) technologies generate multiple data types from biological samples, namely gene expression, physical distance between data points, and/or tissue morphology. Here we developed three computational-statistical algorithms that integrate all three data types to advance understanding of cellular processes. First, we present a spatial graph-based method, pseudo-time-space (PSTS), to model and uncover relationships between transcriptional states of cells across tissues undergoing dynamic change (e.g. neurodevelopment, brain injury and/or microglia activation, and cancer progression). We further developed a spatially-constrained two-level permutation (SCTP) test to study cell-cell interaction, finding highly interactive tissue regions across thousands of ligand-receptor pairs with markedly reduced false discovery rates. Finally, we present a spatial graph-based imputation method with neural network (stSME), to correct for technical noise/dropout and increase ST data coverage. Together, the algorithms that we developed, implemented in the comprehensive and fast stLearn software, allow for robust interrogation of biological processes within healthy and diseased tissues.
空间转录组学 (ST) 技术从生物样本中生成多种数据类型,即基因表达、数据点之间的物理距离和/或组织形态。在这里,我们开发了三种计算统计算法,将这三种数据类型整合在一起,以推进对细胞过程的理解。首先,我们提出了一种基于空间图的方法,即伪时间 - 空间 (PSTS),用于对经历动态变化(例如神经发育、脑损伤和/或小胶质细胞激活以及癌症进展)的组织中细胞的转录状态进行建模和揭示它们之间的关系。我们进一步开发了一种受空间约束的两级置换 (SCTP) 检验方法来研究细胞间相互作用,发现了数千对配体 - 受体对中具有显著降低的假发现率的高度相互作用的组织区域。最后,我们提出了一种基于空间图的神经网络 (stSME) 插补方法,以纠正技术噪声/缺失并增加 ST 数据的覆盖范围。总之,我们开发的算法在全面快速的 stLearn 软件中实现,允许对健康和患病组织中的生物过程进行稳健的探究。
Comput Methods Programs Biomed. 2024-12
Brief Bioinform. 2024-11-22
Nucleic Acids Res. 2025-8-11
PLoS Comput Biol. 2022-11
Nat Biotechnol. 2023-3
Nat Commun. 2022-7-14
Nat Methods. 2022-5
Nat Biotechnol. 2022-3
Nat Methods. 2022-2