Suppr超能文献

利用机器学习算法和技术来定义情感气质类型、互联网内容搜索和活动对青少年群体中出现问题性互联网使用的影响。

Using machine learning algorithms and techniques for defining the impact of affective temperament types, content search and activities on the internet on the development of problematic internet use in adolescents' population.

机构信息

Department of Preventive Medicine, Faculty of Medicine, University of Pristina in Kosovska Mitrovica, Kosovska Mitrovica, Serbia.

Computer Science, Faculty of Electronic Engineering, University of Niš, Niš, Serbia.

出版信息

Front Public Health. 2024 May 17;12:1326178. doi: 10.3389/fpubh.2024.1326178. eCollection 2024.

Abstract

BACKGROUND

By using algorithms and Machine Learning - ML techniques, the aim of this research was to determine the impact of the following factors on the development of Problematic Internet Use (PIU): sociodemographic factors, the intensity of using the Internet, different contents accessed on the Internet by adolescents, adolescents' online activities, life habits and different affective temperament types.

METHODS

Sample included 2,113 adolescents. The following instruments were used: questionnaire about: socio-demographic characteristics, intensity of the Internet use, content categories and online activities on the Internet; Facebook (FB) usage and life habits; The Internet Use Disorder Scale (IUDS). Based on their scores on the scale, subjects were divided into two groups - with or without PIU; Temperament Evaluation of Memphis, Pisa, Paris, and San Diego scale for adolescents (A-TEMPS-A).

RESULTS

Various ML classification models on our data set were trained. Binary classification models were created (class-label attribute was PIU value). Models hyperparameters were optimized using grid search method and models were validated using k-fold cross-validation technique. Random forest was the model with the best overall results and the time spent on FB and the cyclothymic temperament were variables of highest importance for these model. We also applied the ML techniques Lasso and ElasticNet. The three most important variables for the development of PIU with both techniques were: cyclothymic temperament, the longer use of the Internet and the desire to use the Internet more than at present time. Group of variables having a protective effect (regarding the prevention of the development of PIU) was found with both techniques. The three most important were: achievement, search for contents related to art and culture and hyperthymic temperament. Next, 34 important variables that explain 0.76% of variance were detected using the genetic algorithms. Finally, the binary classification model (with or without PIU) with the best characteristics was trained using artificial neural network.

CONCLUSION

Variables related to the temporal determinants of Internet usage, cyclothymic temperament, the desire for increased Internet usage, anxious and irritable temperament, on line gaming, pornography, and some variables related to FB usage consistently appear as important variables for the development of PIU.

摘要

背景

本研究旨在利用算法和机器学习(ML)技术,确定以下因素对网络成瘾(PIU)发展的影响:社会人口统计学因素、互联网使用强度、青少年访问的互联网内容类别、青少年的在线活动、生活习惯和不同的情感气质类型。

方法

样本包括 2113 名青少年。使用的工具包括:关于社会人口统计学特征、互联网使用强度、互联网内容类别和在线活动的问卷;脸书(FB)使用和生活习惯;互联网使用障碍量表(IUDS)。根据量表得分,将受试者分为有或无 PIU 两组;青少年孟菲斯、比萨、巴黎和圣地亚哥气质评估量表(A-TEMPS-A)。

结果

在我们的数据集上训练了各种 ML 分类模型。创建了二分类模型(类别标签属性为 PIU 值)。使用网格搜索方法优化模型超参数,并使用 K 折交叉验证技术验证模型。随机森林是整体效果最好的模型,FB 时间和环性气质是该模型最重要的变量。我们还应用了 ML 技术 Lasso 和 ElasticNet。这两种技术中,导致 PIU 发展的三个最重要的变量是:环性气质、互联网使用时间更长、以及比现在更想使用互联网。这两种技术都发现了一组具有保护作用的变量(关于预防 PIU 的发展)。最重要的三个是:成就、搜索与艺术和文化相关的内容和高敏气质。接下来,使用遗传算法检测到了 34 个重要变量,它们解释了 0.76%的方差。最后,使用人工神经网络训练了具有最佳特征的二分类模型(有或无 PIU)。

结论

与互联网使用的时间决定因素、环性气质、增加互联网使用的欲望、焦虑和易怒气质、在线游戏、色情内容以及与 FB 使用相关的一些变量相关的变量一致,这些变量是 PIU 发展的重要因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d51/11143794/d5e9ccd2bd63/fpubh-12-1326178-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验