Suppr超能文献

中国中小学生和青少年网络成瘾的可解释机器学习预测:基于积极青少年发展数据的纵向研究(2019 - 2022年)

Explainable machine learning prediction of internet addiction among Chinese primary and middle school children and adolescents: a longitudinal study based on positive youth development data (2019-2022).

作者信息

Liu Jiahe, Chen Lang, Chen Yuxin, Luo Jingsong, Yu Kexin, Fan Linlin, Yong Chan, He Huiyu, Liao Simei, Ge Zongyuan, Jiang Lihua

机构信息

AIM for Health Lab, Monash University, Melbourne, VIC, Australia.

School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia.

出版信息

Front Public Health. 2025 Jul 16;13:1590689. doi: 10.3389/fpubh.2025.1590689. eCollection 2025.

Abstract

BACKGROUND

Internet Addiction (IA) has emerged as a critical concern, especially among school age children and adolescents, potentially stalling their physical and mental development. Our study aimed to examine the risk factors associated with IA among Chinese children and adolescents and leverage explainable machine learning (ML) algorithms to predict IA status at the time of assessment, based on Young's Internet Addiction Test.

METHODS

The longitudinal data consisting of 8,824 schoolchildren from the Chengdu Positive Child Development (CPCD) survey were analyzed, where 33.3% of participants were identified with IA (Age: 10.97 ± 2.31, Male: 51.73%). IA was defined using Young's Internet Addiction Test (IAT ≥ 40). Demographic variables such as age, gender, and grade level, along with key variables including scores of Cognitive Behavioral Competencies (CBC), Prosocial Attributes (PA), Positive Identity (PI), General Positive Youth Development Qualities (GPYDQ), Life Satisfaction (LS), Delinquent Behavior (DB), Non-Suicidal Self-Injury (NSSI), Depression (DP), Anxiety (AX), Family Function Disorders (FF), Egocentrism (EG), Empathy (EP), Academic Intrinsic Value (IV), and Academic Utility Value (UV) were examined. Chi-square and Mann-Whitney U tests were employed to validate the significance of the mentioned predictors of IA. We applied six ML models: Extra Random Forest, XGBoost, Logistic Regression, Bernoulli Naïve Bayes, Multi-Layer Perceptron (MLP), and Transformer Encoder. Performance was evaluated via 10-fold cross-validation and held-out test sets across survey waves. Feature selection and SHapley Additive exPlanations (SHAP) analysis were utilised for model improvement and interpretability, respectively.

RESULTS

ExtraRFC achieved the best performance (Test AUC = 0.854, Accuracy = 0.798, F1 = 0.659), outperforming all other models across most metrics and external validations. Key predictors included grade level, delinquent behavior, anxiety, family function, and depression scores. SHAP analysis revealed consistent and interpretable feature contributions across individuals.

CONCLUSION

Depression, anxiety, and family dynamics are significant factors influencing IA in children. The Extra Random Forest model proves most effective in predicting IA, emphasising the importance of addressing these factors to promote healthy digital habits in children. This study presents an effective SHAP-based explainable ML framework for IA prediction in children and adolescents.

摘要

背景

网络成瘾(IA)已成为一个关键问题,尤其是在学龄儿童和青少年中,可能会阻碍他们的身心发展。我们的研究旨在探讨中国儿童和青少年中与网络成瘾相关的风险因素,并利用可解释的机器学习(ML)算法,基于杨氏网络成瘾测试,在评估时预测网络成瘾状况。

方法

分析了来自成都积极儿童发展(CPCD)调查的8824名学童的纵向数据,其中33.3%的参与者被认定为网络成瘾(年龄:10.97±2.31,男性:51.73%)。网络成瘾采用杨氏网络成瘾测试进行定义(IAT≥40)。研究了年龄、性别和年级水平等人口统计学变量,以及包括认知行为能力(CBC)、亲社会属性(PA)、积极身份认同(PI)、一般积极青少年发展品质(GPYDQ)、生活满意度(LS)、违法行为(DB)、非自杀性自伤(NSSI)、抑郁(DP)、焦虑(AX)、家庭功能障碍(FF)、自我中心主义(EG)、同理心(EP)、学业内在价值(IV)和学业实用价值(UV)等关键变量。采用卡方检验和曼-惠特尼U检验来验证上述网络成瘾预测因素的显著性。我们应用了六种机器学习模型:额外随机森林、XGBoost、逻辑回归、伯努利朴素贝叶斯、多层感知器(MLP)和Transformer编码器。通过10折交叉验证和跨调查波次的留出测试集来评估性能。分别利用特征选择和SHapley加性解释(SHAP)分析来改进模型和提高模型的可解释性。

结果

额外随机森林(ExtraRFC)表现最佳(测试AUC=0.854,准确率=0.798,F1=0.659),在大多数指标和外部验证中均优于所有其他模型。关键预测因素包括年级水平、违法行为、焦虑、家庭功能和抑郁得分。SHAP分析揭示了个体间一致且可解释的特征贡献。

结论

抑郁、焦虑和家庭动态是影响儿童网络成瘾水平的重要因素。额外随机森林模型在预测网络成瘾方面最为有效,强调了解决这些因素以促进儿童健康数字习惯的重要性。本研究提出了一个基于SHAP的有效可解释机器学习框架,用于预测儿童和青少年的网络成瘾。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bd5/12307306/78179365a0c1/fpubh-13-1590689-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验