Xu Boyuan, Park Jiyun, Zhang Dawei, De Santiago Héctor A, Li Wei, Liu Xingbo, Luo Jian, Lany Stephan, Qi Yue
Department of Physics, Brown University, Providence, Rhode Island 02912, United States.
School of Engineering, Brown University, Providence, Rhode Island 02912, United States.
Chem Mater. 2024 May 13;36(10):4990-5001. doi: 10.1021/acs.chemmater.3c03038. eCollection 2024 May 28.
Mixing multiple cations can result in a significant configurational entropy, offer a new compositional space with vast tunability, and introduce new computational challenges. For applications such as the two-step solar thermochemical hydrogen (STCH) generation techniques, we demonstrate that using density functional theory (DFT) combined with Metropolis Monte Carlo method (DFT-MC) can efficiently sample the possible cation configurations in compositionally complex perovskite oxide (CCPO) materials, with (LaSr)(MnFeCoAl)O as an example. In the presence of oxygen vacancies (), DFT-MC simulations reveal a significant increase of the local site preference of the cations (short-range ordering), compared to a more random mixing without . Co is found to be the redox-active element and the is the preferentially generated next to Co due to the stretched Co-O bonds. A clear definition of the vacancy formation energy () is proposed for CCPO in an ensemble of structures evolved in parallel from independent DFT-MC paths. By combining the distribution of with interactions into a statistical model, the oxygen nonstoichiometry (δ), under the STCH thermal reduction and oxidation conditions, is predicted and compared with the experiments. Similar to the experiments, the predicted δ can be used to extract the enthalpy and entropy of reduction using the van't Hoff method, providing direct comparisons with the experimental results. This procedure provides a full predictive workflow for using DFT-MC to obtain possible local ordering or fully random structures, understand the redox activity of each element, and predict the thermodynamic properties of CCPOs, for computational screening and design of these CCPO materials at STCH conditions.
混合多种阳离子会导致显著的构型熵,提供具有巨大可调性的新成分空间,并带来新的计算挑战。对于两步太阳能热化学制氢(STCH)技术等应用,我们证明,以(LaSr)(MnFeCoAl)O为例,使用密度泛函理论(DFT)结合 metropolis 蒙特卡罗方法(DFT-MC)可以有效地对成分复杂的钙钛矿氧化物(CCPO)材料中可能的阳离子构型进行采样。在存在氧空位()的情况下,DFT-MC模拟显示,与不存在氧空位时更随机的混合相比,阳离子的局部位点偏好(短程有序)显著增加。发现Co是氧化还原活性元素,由于Co-O键的拉伸,氧空位优先在Co旁边产生。针对从独立的DFT-MC路径并行演化的一组结构中的CCPO,提出了空位形成能()的明确定义。通过将空位形成能的分布与相互作用结合到一个统计模型中,预测了STCH热还原和氧化条件下的氧非化学计量比(δ),并与实验进行了比较。与实验类似,预测的δ可用于使用范特霍夫方法提取还原焓和熵,从而与实验结果进行直接比较。该过程提供了一个完整的预测工作流程,用于使用DFT-MC获得可能的局部有序或完全随机结构,了解每种元素的氧化还原活性,并预测CCPO的热力学性质,以便在STCH条件下对这些CCPO材料进行计算筛选和设计。