Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany.
Peter Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Juelich 52425, Germany.
ACS Nano. 2023 Mar 28;17(6):5329-5339. doi: 10.1021/acsnano.2c08096. Epub 2023 Mar 13.
High-entropy materials are an emerging pathway in the development of high-activity (electro)catalysts because of the inherent tunability and coexistence of multiple potential active sites, which may lead to earth-abundant catalyst materials for energy-efficient electrochemical energy storage. In this report, we identify how the multication composition in high-entropy perovskite oxides (HEO) contributes to high catalytic activity for the oxygen evolution reaction (OER), i.e., the key kinetically limiting half-reaction in several electrochemical energy conversion technologies, including green hydrogen generation. We compare the activity of the (001) facet of LaCrMnFeCoNiO with the parent compounds (single B-site in the ABO perovskite). While the single B-site perovskites roughly follow the expected volcano-type activity trends, the HEO clearly outperforms all of its parent compounds with 17 to 680 times higher currents at a fixed overpotential. As all samples were grown as an epitaxial layer, our results indicate an intrinsic composition-function relationship, avoiding the effects of complex geometries or unknown surface composition. In-depth X-ray photoemission studies reveal a synergistic effect of simultaneous oxidation and reduction of different transition metal cations during the adsorption of reaction intermediates. The surprisingly high OER activity demonstrates that HEOs are a highly attractive, earth-abundant material class for high-activity OER electrocatalysts, possibly allowing the activity to be fine-tuned beyond the scaling limits of mono- or bimetallic oxides.
高熵材料是开发高活性(电)催化剂的一个新兴途径,因为其固有可调性和多种潜在活性位的共存,这可能导致用于高效电化学储能的丰富催化剂材料。在本报告中,我们确定了高熵钙钛矿氧化物(HEO)中的多阳离子组成如何有助于氧析出反应(OER)的高催化活性,即包括绿色制氢在内的几种电化学能量转换技术中的关键动力学限制的半反应。我们比较了 LaCrMnFeCoNiO(001)面的活性与其母体化合物(ABO 钙钛矿中的单个 B 位)。虽然单 B 位钙钛矿大致遵循预期的火山型活性趋势,但 HEO 明显优于其所有母体化合物,在固定过电势下的电流高出 17 到 680 倍。由于所有样品均作为外延层生长,因此我们的结果表明存在内在的组成-功能关系,避免了复杂几何形状或未知表面组成的影响。深入的 X 射线光电子能谱研究揭示了在吸附反应中间体时不同过渡金属阳离子同时氧化和还原的协同效应。出人意料的高 OER 活性表明,HEO 是一种极具吸引力的、丰富的 OER 电催化剂高活性材料,其活性可能超出单金属或双金属氧化物的缩放限制进行微调。