Suppr超能文献

人工智能在基层医疗中应用于用力肺活量测定

Artificial Intelligence Applied to Forced Spirometry in Primary Care.

作者信息

Moreno Mendez Rosaly, Marín Antonio, Ferrando José Ramon, Rissi Castro Giuliana, Cepeda Madrigal Sonia, Agostini Gabriela, Catalan Serra Pablo

机构信息

Department of Internal Medicine, Kristiansund Hospital, Møre og Romsdal, Norway.

Data Science in Energy, Seville, Spain.

出版信息

Open Respir Arch. 2024 Mar 2;6(Suppl 2):100313. doi: 10.1016/j.opresp.2024.100313. eCollection 2024 Oct.

Abstract

INTRODUCTION

This study aims to create an artificial intelligence (AI) based machine learning (ML) model capable of predicting a spirometric obstructive pattern using variables with the highest predictive power derived from an active case-finding program for COPD in primary care.

MATERIAL AND METHODS

A total of 1190 smokers, aged 30-80 years old with no prior history of respiratory disease, underwent spirometry with bronchodilation. The sample was analyzed using AI tools. Based on an exploratory data analysis (EDA), independent variables (according to mutual information analysis) were trained using a gradient boosting algorithm (GBT) and validated through cross-validation.

RESULTS

With an area under the curve close to unity, the model predicted a spirometric obstructive pattern using variables with the highest predictive power: FEV1_theoretical_pre values. Sensitivity: 93%. Positive predictive value: 94%. Specificity: 97%. Negative predictive value: 96%. Accuracy: 95%. Precision: 94%.

CONCLUSION

An ML model can predict the presence of an obstructive pattern in spirometry in a primary care smoking population with no prior diagnosis of respiratory disease using the FEV1_theoretical_pre values with an accuracy and precision exceeding 90%. Further studies including clinical data and strategies for integrating AI into clinical workflow are needed.

摘要

引言

本研究旨在创建一种基于人工智能(AI)的机器学习(ML)模型,该模型能够使用从基层医疗中慢性阻塞性肺疾病(COPD)主动病例发现计划中得出的具有最高预测能力的变量来预测肺量计阻塞模式。

材料与方法

共有1190名年龄在30 - 80岁之间、无呼吸系统疾病既往史的吸烟者接受了支气管扩张后的肺量计检查。使用人工智能工具对样本进行分析。基于探索性数据分析(EDA),使用梯度提升算法(GBT)对自变量(根据互信息分析)进行训练,并通过交叉验证进行验证。

结果

该模型使用具有最高预测能力的变量:FEV1_理论预估值,预测肺量计阻塞模式,曲线下面积接近1。敏感性:93%。阳性预测值:94%。特异性:97%。阴性预测值:96%。准确性:95%。精确性:94%。

结论

一个机器学习模型可以使用FEV1_理论预估值,在未事先诊断出呼吸系统疾病的基层医疗吸烟人群中预测肺量计阻塞模式的存在,其准确性和精确性超过90%。需要进一步开展包括临床数据以及将人工智能整合到临床工作流程中的策略等研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee8/11137334/45c6e7b11812/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验