Cleveland Clinic, Cleveland, Ohio.
DELFI Diagnostics, Baltimore, Maryland.
Cancer Discov. 2024 Nov 1;14(11):2224-2242. doi: 10.1158/2159-8290.CD-24-0519.
Lung cancer screening via annual low-dose computed tomography has poor adoption. We conducted a prospective case-control study among 958 individuals eligible for lung cancer screening to develop a blood-based lung cancer detection test that when positive is followed by a low-dose computed tomography. Changes in genome-wide cell-free DNA fragmentation profiles (fragmentomes) in peripheral blood reflected genomic and chromatin characteristics of lung cancer. We applied machine learning to fragmentome features to identify individuals who were more or less likely to have lung cancer. We trained the classifier using 576 cases and controls from study samples and validated it in a held-out group of 382 cases and controls. The validation demonstrated high sensitivity for lung cancer and consistency across demographic groups and comorbid conditions. Applying test performance to the screening eligible population in a 5-year model with modest utilization assumptions suggested the potential to prevent thousands of lung cancer deaths. Significance: Lung cancer screening has poor adoption. Our study describes the development and validation of a novel blood-based lung cancer screening test utilizing a highly affordable, low-coverage genome-wide sequencing platform to analyze cell-free DNA fragmentation patterns. The test could improve lung cancer screening rates leading to substantial public health benefits. See related commentary by Haber and Skates, p. 2025.
肺癌筛查通过每年的低剂量计算机断层扫描(LDCT)进行,但这种方法的采用率很低。我们在 958 名符合肺癌筛查条件的个体中进行了一项前瞻性病例对照研究,旨在开发一种基于血液的肺癌检测测试,当该测试呈阳性时,随后进行 LDCT。外周血中全基因组游离 DNA 片段化特征(片段组)的变化反映了肺癌的基因组和染色质特征。我们应用机器学习来识别片段组特征,以确定个体更有可能或不太可能患有肺癌。我们使用来自研究样本的 576 例病例和对照来训练分类器,并在 382 例病例和对照的独立组中进行验证。验证结果表明,该测试对肺癌具有较高的灵敏度,并且在不同的人群和合并症中具有一致性。将测试性能应用于具有适度利用假设的 5 年模型中的筛查合格人群,表明有潜力预防数千例肺癌死亡。意义:肺癌筛查的采用率很低。本研究描述了一种新型的基于血液的肺癌筛查测试的开发和验证,该测试利用价格实惠、低覆盖度的全基因组测序平台来分析游离 DNA 片段化模式。该测试可以提高肺癌筛查率,从而带来重大的公共卫生效益。请参阅 Haber 和 Skates 的相关评论,第 2025 页。
Clin Transl Med. 2025-2
Cancer Lett. 2024-11-1
Commun Med (Lond). 2025-8-21
Nat Rev Genet. 2025-8-15
Curr Issues Mol Biol. 2025-6-6
Signal Transduct Target Ther. 2025-6-15
Nat Rev Clin Oncol. 2025-6-13
J Exp Clin Cancer Res. 2025-5-31
J Gastrointest Oncol. 2025-4-30
Mol Diagn Ther. 2025-5
CA Cancer J Clin. 2024
J Am Coll Radiol. 2024-3
Am Soc Clin Oncol Educ Book. 2023-1
Cell Genom. 2023-1-11
CA Cancer J Clin. 2023-1
Nat Commun. 2021-8-20