Suppr超能文献

通过全基因组 5-羟甲基化图谱进行高灵敏度和特异性的非侵入性检测,用于早期肺癌检测。

A Highly Sensitive and Specific Non-Invasive Test through Genome-Wide 5-Hydroxymethylation Mapping for Early Detection of Lung Cancer.

机构信息

Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.

Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.

出版信息

Small Methods. 2024 Mar;8(3):e2300747. doi: 10.1002/smtd.202300747. Epub 2023 Nov 21.

Abstract

Low-dose computed tomography screening can increase the detection for non-small-cell lung cancer (NSCLC). To improve the diagnostic accuracy of early-stage NSCLC detection, ultrasensitive methods are used to detect cell-free DNA (cfDNA) 5-hydroxymethylcytosine (5hmC) in plasma. Genome-wide 5hmC is profiled in 1990 cfDNA samples collected from patients with non-small cell lung cancer (NSCLC, n = 727), healthy controls (HEA, n = 1,092), as well as patients with small cell lung cancer (SCLC, n = 41), followed by sample randomization, differential analysis, feature selection, and modeling using a machine learning approach. Differentially modified features reflecting tissue origin. A weighted diagnostic model comprised of 105 features is developed to compute a detection score for each individual, which showed an area under the curve (AUC) range of 86.4%-93.1% in the internal and external validation sets for distinguishing lung cancer from HEA controls, significantly outperforming serum biomarkers (p < 0.001). The 5hmC-based model detected high-risk pulmonary nodules (AUC: 82%)and lung cancer of different subtypes with high accuracy as well. A highly sensitive and specific blood-based test is developed for detecting lung cancer. The 5hmC biomarkers in cfDNA offer a promising blood-based test for lung cancer.

摘要

低剂量计算机断层扫描筛查可以增加非小细胞肺癌(NSCLC)的检出率。为了提高早期 NSCLC 检测的诊断准确性,人们使用超灵敏方法来检测血浆中的无细胞游离 DNA(cfDNA)5-羟甲基胞嘧啶(5hmC)。对 1990 份来自非小细胞肺癌(NSCLC,n=727)、健康对照(HEA,n=1092)和小细胞肺癌(SCLC,n=41)患者的 cfDNA 样本进行了全基因组 5hmC 分析,然后采用机器学习方法进行了样本随机化、差异分析、特征选择和建模。差异修饰的特征反映了组织来源。建立了一个由 105 个特征组成的加权诊断模型,用于计算每个个体的检测评分,该模型在内部和外部验证集中用于区分肺癌与 HEA 对照的曲线下面积(AUC)范围为 86.4%-93.1%,显著优于血清生物标志物(p<0.001)。该基于 5hmC 的模型还能够准确地检测高危肺结节(AUC:82%)和不同亚型的肺癌。开发了一种高度敏感和特异的基于血液的检测方法来检测肺癌。cfDNA 中的 5hmC 生物标志物为肺癌提供了一种有前途的基于血液的检测方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验