Ashourvan Arash, Candy J
General Atomics, San Diego, California, USA.
Phys Rev Lett. 2024 May 17;132(20):205101. doi: 10.1103/PhysRevLett.132.205101.
In the edge of an L-mode tokamak plasma, particle transport and ion energy transport are shown to follow a strong microturbulence (SMT) scaling, whereas in the plasma core the transport is shown to follow quasilinear turbulence scaling. The dependence of diffusivity on potential fluctuation amplitude is linear in the SMT regime, and quadratic in the quasilinear regime. The transition to strong microturbulence results from larger E×B drift velocities in the edge compared to the plasma core. At these larger velocities, ions traverse the spatially correlated range faster than the stochastic evolution of the electric potential. Hence, these particles do not experience a time-stochastic field as required by the quasilinear approximation. Instead, scattering of particles in the SMT regime is caused by spatial stochasticity. In contrast, electron energy transport remains quasilinear due to decorrelations caused by collisions and fast parallel motion. Improved understanding of transport beyond quasilinear theory opens the path to more accurate modeling of transport in the tokamak plasma edge.
在低约束模式(L-mode)托卡马克等离子体的边缘,粒子输运和离子能量输运表现出遵循强微湍流(SMT)标度关系,而在等离子体芯部,输运表现出遵循准线性湍流标度关系。在SMT区域,扩散率对电势涨落幅度的依赖是线性的,而在准线性区域是二次的。向强微湍流的转变源于边缘处比等离子体芯部更大的E×B漂移速度。在这些更大的速度下,离子穿越空间相关范围的速度比电势的随机演化速度更快。因此这些粒子没有经历准线性近似所要求的时间随机场。相反,SMT区域中粒子的散射是由空间随机性引起的。相比之下,由于碰撞和快速平行运动导致的去相关性,电子能量输运仍为准线性。对超越准线性理论的输运的更好理解为托卡马克等离子体边缘输运的更精确建模开辟了道路。