CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China.
School of Physical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
Phys Rev Lett. 2024 May 17;132(20):204002. doi: 10.1103/PhysRevLett.132.204002.
Many eukaryotic microorganisms propelled by multiple flagella can swim very rapidly with distinct gaits. Here, we model a three-dimensional mutiflagellate swimmer, resembling the microalgae. When the flagella are actuated synchronously, the swimming efficiency can be enhanced or reduced by interflagella hydrodynamic interactions (HIs), determined by the intrinsic tilting angle of the flagella. The asynchronous gait with a phase difference between neighboring flagella can reduce oscillatory motion via the basal mechanical coupling. In the presence of a spherical body, simulations taking into account the flagella-body interactions reveal the advantage of anterior configuration compared with posterior configuration, where in the latter case an optimal flagella number arises. Apart from understanding the role of HIs in the multiflagellate microorganisms, this work could also guide laboratory fabrications of novel microswimmers.
许多由多个鞭毛推动的真核微生物可以用独特的步态快速游动。在这里,我们模拟了一种类似于微藻的三维多鞭毛游泳者。当鞭毛同步运动时,通过鞭毛的固有倾斜角,游泳效率可以通过相邻鞭毛之间的水动力相互作用(HI)来增强或降低。具有相邻鞭毛相位差的异步步态可以通过基底机械耦合来减少振荡运动。在球形物体存在的情况下,考虑到鞭毛-物体相互作用的模拟揭示了前向配置相对于后向配置的优势,在后向配置中,出现了最佳的鞭毛数量。除了了解 HI 在多鞭毛微生物中的作用外,这项工作还可以为新型微游泳者的实验室制造提供指导。