Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):18058-63. doi: 10.1073/pnas.1300895110. Epub 2013 Oct 21.
The unicellular green alga Chlamydomonas swims with two flagella that can synchronize their beat. Synchronized beating is required to swim both fast and straight. A long-standing hypothesis proposes that synchronization of flagella results from hydrodynamic coupling, but the details are not understood. Here, we present realistic hydrodynamic computations and high-speed tracking experiments of swimming cells that show how a perturbation from the synchronized state causes rotational motion of the cell body. This rotation feeds back on the flagellar dynamics via hydrodynamic friction forces and rapidly restores the synchronized state in our theory. We calculate that this "cell-body rocking" provides the dominant contribution to synchronization in swimming cells, whereas direct hydrodynamic interactions between the flagella contribute negligibly. We experimentally confirmed the two-way coupling between flagellar beating and cell-body rocking predicted by our theory.
单细胞绿藻衣藻用两条可以同步摆动的鞭毛游动。为了快速且直线游动,鞭毛需要同步摆动。一个长期存在的假说认为,鞭毛的同步是由水动力耦合引起的,但细节尚不清楚。在这里,我们提出了游动细胞的现实水动力计算和高速跟踪实验,展示了从同步状态的扰动如何导致细胞体的旋转运动。这种旋转通过水动力摩擦力反馈到鞭毛动力学,并在我们的理论中迅速恢复同步状态。我们计算出,这种“细胞体摇摆”为游动细胞的同步提供了主要贡献,而鞭毛之间的直接水动力相互作用可以忽略不计。我们通过实验证实了我们理论所预测的鞭毛拍打和细胞体摇摆之间的双向耦合。