Suppr超能文献

推进碳纤维复合材料检测:通过超声数据的三维U-Net分割实现基于深度学习的缺陷定位与尺寸测量

Advancing Carbon Fiber Composite Inspection: Deep Learning-Enabled Defect Localization and Sizing via 3-D U-Net Segmentation of Ultrasonic Data.

作者信息

McKnight Shaun, Tunukovic Vedran, Gareth Pierce S, Mohseni Ehsan, Pyle Richard, MacLeod Charles N, O'Hare Tom

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Sep;71(9):1106-1119. doi: 10.1109/TUFFC.2024.3408314. Epub 2024 Sep 4.

Abstract

In nondestructive evaluation (NDE), accurately characterizing defects within components relies on accurate sizing and localization to evaluate the severity or criticality of defects. This study presents for the first time a deep learning (DL) methodology using 3-D U-Net to localize and size defects in carbon fiber reinforced polymer (CFRP) composites through volumetric segmentation of ultrasonic testing (UT) data. Using a previously developed approach, synthetic training data, closely representative of experimental data, was used for the automatic generation of ground truth segmentation masks. The model's performance was compared to the conventional amplitude 6 dB drop analysis method used in the industry against ultrasonic defect responses from 40 defects fabricated in CFRP components. The results showed good agreement with the 6 dB drop method for in-plane localization and excellent through-thickness localization, with mean absolute errors (MAEs) of 0.57 and 0.08 mm, respectively. Initial sizing results consistently oversized defects with a 55% higher mean average error than the 6 dB drop method. However, when a correction factor was applied to account for variation between the experimental and synthetic domains, the final sizing accuracy resulted in a 35% reduction in MAE compared to the 6 dB drop technique. By working with volumetric ultrasonic data (as opposed to 2-D images), this approach reduces preprocessing (such as signal gating) and allows for the generation of 3-D defect masks which can be used for the generation of computer-aided design files; greatly reducing the qualification reporting burden of NDE operators.

摘要

在无损检测(NDE)中,准确表征部件内部的缺陷依赖于精确的尺寸测量和定位,以评估缺陷的严重程度或关键性。本研究首次提出了一种深度学习(DL)方法,该方法使用3-D U-Net通过对超声检测(UT)数据进行体积分割来定位和测量碳纤维增强聚合物(CFRP)复合材料中的缺陷。使用先前开发的方法,将与实验数据高度相似的合成训练数据用于自动生成地面真值分割掩码。将该模型的性能与行业中使用的传统6 dB幅度下降分析方法进行比较,以分析CFRP部件中制造的40个缺陷的超声缺陷响应。结果表明,在平面内定位方面与6 dB下降法具有良好的一致性,在厚度方向上具有出色的定位效果,平均绝对误差(MAE)分别为0.57和0.08 mm。初始尺寸测量结果始终高估了缺陷,平均平均误差比6 dB下降法高55%。然而,当应用校正因子来考虑实验域和合成域之间的差异时,最终尺寸测量精度导致MAE比6 dB下降技术降低了35%。通过处理体积超声数据(与二维图像相对),这种方法减少了预处理(如信号选通),并允许生成可用于生成计算机辅助设计文件的三维缺陷掩码;大大减轻了无损检测操作员的鉴定报告负担。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验