Suppr超能文献

用于超声缺陷尺寸测量的可解释和可阐释的机器学习

Interpretable and Explainable Machine Learning for Ultrasonic Defect Sizing.

作者信息

Pyle Richard J, Hughes Robert R, Wilcox Paul D

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Apr;70(4):277-290. doi: 10.1109/TUFFC.2023.3248968. Epub 2023 Mar 28.

Abstract

Despite its popularity in literature, there are few examples of machine learning (ML) being used for industrial nondestructive evaluation (NDE) applications. A significant barrier is the "black box" nature of most ML algorithms. This article aims to improve the interpretability and explainability of ML for ultrasonic NDE by presenting a novel dimensionality reduction method: Gaussian feature approximation (GFA). GFA involves fitting a 2-D elliptical Gaussian function in an ultrasonic image and storing the seven parameters that describe each Gaussian. These seven parameters can then be used as inputs to data analysis methods such as the defect-sizing neural network presented in this article. GFA is applied to ultrasonic defect sizing for inline pipe inspection as an example application. This approach is compared to sizing with the same neural network, and two other dimensionality reduction methods [the parameters of 6 dB drop boxes and principal component analysis (PCA)], as well as a convolutional neural network (CNN) applied to raw ultrasonic images. Of the dimensionality reduction methods tested, GFA features produce the closest sizing accuracy to the sizing from the raw images, with only a 23% increase in root mean square error (RMSE), despite a 96.5% reduction in the dimensionality of the input data. Implementing ML with GFA is implicitly more interpretable than doing so with PCA or raw images as inputs, and gives significantly more sizing accuracy than 6 dB drop boxes. Shapley additive explanations (SHAPs) are used to calculate how each feature contributes to the prediction of an individual defect's length. Analysis of SHAP values demonstrates that the GFA-based neural network proposed displays many of the same relationships between defect indications and their predicted size as occur in traditional NDE sizing methods.

摘要

尽管机器学习(ML)在文献中很受欢迎,但用于工业无损检测(NDE)应用的实例却很少。一个重大障碍是大多数ML算法的“黑箱”性质。本文旨在通过提出一种新颖的降维方法:高斯特征近似(GFA),来提高ML在超声无损检测中的可解释性。GFA包括在超声图像中拟合二维椭圆高斯函数,并存储描述每个高斯的七个参数。然后,这七个参数可以用作数据分析方法的输入,如本文提出的缺陷尺寸神经网络。以在线管道检测中的超声缺陷尺寸测量为例应用GFA。将这种方法与使用相同神经网络进行尺寸测量、另外两种降维方法[6 dB下降框的参数和主成分分析(PCA)]以及应用于原始超声图像的卷积神经网络(CNN)进行比较。在测试的降维方法中,GFA特征产生的尺寸测量精度与原始图像的尺寸测量最接近,尽管输入数据的维度降低了96.5%,但均方根误差(RMSE)仅增加了23%。与以PCA或原始图像作为输入相比,使用GFA实现ML在本质上更具可解释性,并且尺寸测量精度比6 dB下降框高得多。使用Shapley加法解释(SHAPs)来计算每个特征对单个缺陷长度预测的贡献。对SHAP值的分析表明,所提出的基于GFA的神经网络在缺陷指示与其预测尺寸之间显示出许多与传统无损检测尺寸测量方法相同的关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验