Suppr超能文献

前列腺健康指数密度有助于诊断台湾多中心研究中使用磁共振成像靶向前列腺活检检测到的前列腺癌。

Prostate health index density aids the diagnosis of prostate cancer detected using magnetic resonance imaging targeted prostate biopsy in Taiwanese multicenter study.

机构信息

Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC.

Department of Urology, Taipei Medical University Hospital, Taipei, Taiwan, ROC.

出版信息

J Chin Med Assoc. 2024 Jul 1;87(7):678-685. doi: 10.1097/JCMA.0000000000001117. Epub 2024 Jun 3.

Abstract

BACKGROUND

Multiparametric magnetic resonance imaging (mpMRI) followed by MRI-targeted prostate biopsy is the current standard for diagnosing prostate cancer (PCa). However, studies evaluating the value of biomarkers, including prostate health index (PHI) and its derivatives using this method are limited. We aimed to investigate the efficacy of PHI density (PHID) in guiding MRI-targeted prostate biopsies to identify clinically significant PCas (csPCa).

METHODS

The multicenter prospectively registered prostate biopsy database from three medical centers in Taiwan included patients with PHI and MRI-targeted and/or systematic prostate biopsies. We assessed the required values of prostate-specific antigen (PSA), prostate volume, PHI, PHID, and Prostate Imaging Reporting & Data System (PI-RADS) score using multivariable analyses, receiver operating characteristic curve analysis, and decision curve analyses (DCA). csPCa was defined as the International Society of Urological Pathology Gleason group ≥2 PCa, with an emphasis on reducing unwarranted biopsies.

RESULTS

The study cohort comprised 420 individuals. Diagnoses of PCa and csPCa were confirmed in 62.4% and 47.9% of the participants, respectively. The csPCa diagnosis rates were increased with increasing PI-RADS scores (20.5%, 44.2%, and 73.1% for scores 3, 4, and 5, respectively). Independent predictors for csPCa detection included PHI, prostate volume, and PI-RADS scores of 4 and 5 in multivariable analyses. The area under the curve (AUC) for csPCa of PHID (0.815) or PHI (0.788) was superior to that of PSA density (0.746) and PSA (0.635) in the entire cohort, and the superiority of PHID (0.758) was observed in PI-RADS 3 lesions. DCA revealed that PHID achieved the best net clinical benefit in PI-RADS 3-5 and 4/5 cases. Among PI-RADS 3 lesions, cutoff values of PHID 0.70 and 0.43 could eliminate 51.8% and 30.4% of omitted biopsies, respectively.

CONCLUSION

PHI-derived biomarkers, including PHID, performed better than other PSA-derived biomarkers in diagnosing PCa in MRI-detected lesions.

摘要

背景

多参数磁共振成像(mpMRI)联合 MRI 靶向前列腺活检是目前诊断前列腺癌(PCa)的标准方法。然而,使用这种方法评估生物标志物(包括前列腺健康指数(PHI)及其衍生物)价值的研究有限。我们旨在研究 PHI 密度(PHID)在指导 MRI 靶向前列腺活检以识别临床显著 PCa(csPCa)中的作用。

方法

该研究从台湾三家医疗中心的多中心前瞻性注册前列腺活检数据库中纳入了 PHI 检测、MRI 靶向和/或系统前列腺活检的患者。我们使用多变量分析、受试者工作特征曲线分析和决策曲线分析(DCA)评估前列腺特异性抗原(PSA)、前列腺体积、PHI、PHID 和前列腺影像报告和数据系统(PI-RADS)评分的临界值。csPCa 定义为国际泌尿病理学会 Gleason 分级≥2 级的 PCa,重点是减少不必要的活检。

结果

该研究队列包括 420 名参与者。62.4%和 47.9%的参与者被诊断为 PCa 和 csPCa。csPCa 的诊断率随 PI-RADS 评分的增加而增加(评分分别为 3、4 和 5 时为 20.5%、44.2%和 73.1%)。多变量分析显示,csPCa 的独立预测因子包括 PHI、前列腺体积和 PI-RADS 评分 4 和 5。PHID(0.815)或 PHI(0.788)的曲线下面积(AUC)在整个队列中优于 PSA 密度(0.746)和 PSA(0.635),在 PI-RADS 3 病变中 PHID(0.758)的优势更为明显。DCA 显示,在 PI-RADS 3-5 和 4/5 病例中,PHID 获得了最佳的净临床获益。在 PI-RADS 3 病变中,PHID 的临界值为 0.70 和 0.43 时,可分别消除 51.8%和 30.4%的遗漏活检。

结论

在 MRI 检测到的病变中,PHI 衍生的生物标志物(包括 PHID)在诊断 PCa 方面优于其他 PSA 衍生的生物标志物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验