School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China.
Tissue Engineering Research Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
Adv Mater. 2024 Aug;36(32):e2404264. doi: 10.1002/adma.202404264. Epub 2024 Jun 11.
After myocardial infarction (MI), sustained ischemic events induce pathological microenvironments characterized by ischemia-hypoxia, oxidative stress, inflammatory responses, matrix remodeling, and fibrous scarring. Conventional clinical therapies lack spatially targeted and temporally responsive modulation of the infarct microenvironment, leading to limited myocardial repair. Engineered hydrogels have a chemically programmed toolbox for minimally invasive localization of the pathological microenvironment and personalized responsive modulation over different pathological periods. Chemically programmed strategies for crosslinking interactions, interfacial binding, and topological microstructures in hydrogels enable minimally invasive implantation and in situ integration tailored to the myocardium. This enhances substance exchange and signal interactions within the infarcted microenvironment. Programmed responsive polymer networks, intelligent micro/nanoplatforms, and biological therapeutic cues contribute to the formation of microenvironment-modulated hydrogels with precise targeting, spatiotemporal control, and on-demand feedback. Therefore, this review summarizes the features of the MI microenvironment and chemically programmed schemes for hydrogels to conform, integrate, and modulate the cardiac pathological microenvironment. Chemically programmed strategies for oxygen-generating, antioxidant, anti-inflammatory, provascular, and electrointegrated hydrogels to stimulate iterative and translational cardiac tissue engineering are discussed.
心肌梗死后(MI),持续的缺血事件会引发以缺血缺氧、氧化应激、炎症反应、基质重塑和纤维瘢痕形成为特征的病理性微环境。传统的临床治疗方法缺乏对梗死微环境的空间靶向和时间响应调节,导致心肌修复有限。工程水凝胶具有化学编程工具包,可用于微创定位病理微环境,并在不同的病理时期进行个性化响应调节。水凝胶中的交联相互作用、界面结合和拓扑微结构的化学编程策略可实现微创植入和针对心肌的原位整合。这增强了梗死微环境内物质交换和信号相互作用。编程响应聚合物网络、智能微/纳米平台和生物治疗线索有助于形成具有精确靶向、时空控制和按需反馈的微环境调节水凝胶。因此,本综述总结了 MI 微环境的特征和水凝胶的化学编程方案,以顺应、整合和调节心脏病理微环境。讨论了用于产生氧气、抗氧化、抗炎、促进血管生成和电整合的水凝胶的化学编程策略,以刺激迭代和转化心脏组织工程。