Institute of Bioinformatics, University of Georgia, Athens, GA, USA.
Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
NPJ Syst Biol Appl. 2024 Jun 3;10(1):64. doi: 10.1038/s41540-024-00390-0.
Fructosamine-3-kinases (FN3Ks) are a conserved family of repair enzymes that phosphorylate reactive sugars attached to lysine residues in peptides and proteins. Although FN3Ks are present across the Tree of Life and share detectable sequence similarity to eukaryotic protein kinases, the biological processes regulated by these kinases are largely unknown. To address this knowledge gap, we leveraged the FN3K CRISPR Knock-Out (KO) HepG2 cell line alongside an integrative multi-omics study combining transcriptomics, metabolomics, and interactomics to place these enzymes in a pathway context. The integrative analyses revealed the enrichment of pathways related to oxidative stress response, lipid biosynthesis (cholesterol and fatty acids), and carbon and co-factor metabolism. Moreover, enrichment of nicotinamide adenine dinucleotide (NAD) binding proteins and localization of human FN3K (HsFN3K) to mitochondria suggests potential links between FN3K and NAD-mediated energy metabolism and redox balance. We report specific binding of HsFN3K to NAD compounds in a metal and concentration-dependent manner and provide insight into their binding mode using modeling and experimental site-directed mutagenesis. Our studies provide a framework for targeting these understudied kinases in diabetic complications and metabolic disorders where redox balance and NAD-dependent metabolic processes are altered.
果糖胺-3-激酶(FN3Ks)是一个保守的修复酶家族,可磷酸化附着在肽和蛋白质赖氨酸残基上的反应性糖。尽管 FN3Ks 存在于生命之树中,并与真核蛋白激酶具有可检测的序列相似性,但这些激酶调节的生物学过程在很大程度上是未知的。为了填补这一知识空白,我们利用 FN3K CRISPR Knock-Out(KO)HepG2 细胞系以及整合的多组学研究,结合转录组学、代谢组学和互作组学,将这些酶置于途径背景中。综合分析揭示了与氧化应激反应、脂质生物合成(胆固醇和脂肪酸)以及碳和辅酶代谢相关的途径富集。此外,烟酰胺腺嘌呤二核苷酸(NAD)结合蛋白的富集和人 FN3K(HsFN3K)定位于线粒体表明 FN3K 与 NAD 介导的能量代谢和氧化还原平衡之间可能存在联系。我们报告了 HsFN3K 以金属和浓度依赖的方式特异性结合 NAD 化合物,并使用建模和实验定点突变提供了对其结合模式的深入了解。我们的研究为靶向这些研究不足的激酶提供了框架,这些激酶在糖尿病并发症和代谢紊乱中,氧化还原平衡和 NAD 依赖性代谢过程发生改变。