Suppr超能文献

使用计算机化眼动追踪技术对短期和长期轻度创伤性脑损伤进行分类。

Classification of short and long term mild traumatic brain injury using computerized eye tracking.

机构信息

School of Optometry and Vision Science, The University of Auckland, Private Bag 92019, Auckland, 1023, New Zealand.

New Zealand College of Chiropractic, Auckland, New Zealand.

出版信息

Sci Rep. 2024 Jun 3;14(1):12686. doi: 10.1038/s41598-024-63540-8.

Abstract

Accurate, and objective diagnosis of brain injury remains challenging. This study evaluated useability and reliability of computerized eye-tracker assessments (CEAs) designed to assess oculomotor function, visual attention/processing, and selective attention in recent mild traumatic brain injury (mTBI), persistent post-concussion syndrome (PPCS), and controls. Tests included egocentric localisation, fixation-stability, smooth-pursuit, saccades, Stroop, and the vestibulo-ocular reflex (VOR). Thirty-five healthy adults performed the CEA battery twice to assess useability and test-retest reliability. In separate experiments, CEA data from 55 healthy, 20 mTBI, and 40 PPCS adults were used to train a machine learning model to categorize participants into control, mTBI, or PPCS classes. Intraclass correlation coefficients demonstrated moderate (ICC > .50) to excellent (ICC > .98) reliability (p < .05) and satisfactory CEA compliance. Machine learning modelling categorizing participants into groups of control, mTBI, and PPCS performed reasonably (balanced accuracy control: 0.83, mTBI: 0.66, and PPCS: 0.76, AUC-ROC: 0.82). Key outcomes were the VOR (gaze stability), fixation (vertical error), and pursuit (total error, vertical gain, and number of saccades). The CEA battery was reliable and able to differentiate healthy, mTBI, and PPCS patients reasonably well. While promising, the diagnostic model accuracy should be improved with a larger training dataset before use in clinical environments.

摘要

脑损伤的准确客观诊断仍然具有挑战性。本研究评估了计算机眼球追踪评估(CEA)在最近的轻度创伤性脑损伤(mTBI)、持续性脑震荡后综合征(PPCS)和对照组中的可用性和可靠性,这些评估旨在评估眼球运动功能、视觉注意/处理和选择性注意。测试包括自我中心定位、固视稳定性、平滑追踪、眼跳、斯特鲁普和前庭眼反射(VOR)。35 名健康成年人两次完成 CEA 电池测试,以评估可用性和测试-重测可靠性。在单独的实验中,使用 55 名健康成年人、20 名 mTBI 成年人和 40 名 PPCS 成年人的 CEA 数据来训练机器学习模型,将参与者分类为对照组、mTBI 或 PPCS 组。组内相关系数表明可靠性适中(ICC>0.50)到优秀(ICC>0.98)(p<0.05),CEA 符合率令人满意。将参与者分类为对照组、mTBI 和 PPCS 组的机器学习模型表现尚可(对照组的平衡准确率为 0.83,mTBI 为 0.66,PPCS 为 0.76,AUC-ROC 为 0.82)。主要结果是 VOR(注视稳定性)、固视(垂直误差)和追踪(总误差、垂直增益和眼跳次数)。CEA 电池可靠,能够合理地区分健康、mTBI 和 PPCS 患者。虽然有希望,但在临床环境中使用之前,诊断模型的准确性应该通过更大的训练数据集来提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fece/11148176/10360314c49c/41598_2024_63540_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验