Bethune International Peace Hospital, Shijiazhuang, China.
Sci Rep. 2024 Jun 3;14(1):12736. doi: 10.1038/s41598-024-63743-z.
The purpose of this study was to develop and validate a physiologically based pharmacokinetic (PBPK) model combined with an EGFR occupancy (EO) model for osimertinib (OSI) to predict plasma trough concentration (C) and the intracranial time-course of EGFR (T790M and L858R mutants) engagement in patient populations. The PBPK model was also used to investigate the key factors affecting OSI pharmacokinetics (PK) and intracranial EGFR engagement, analyze resistance to the target mutation C797S, and determine optimal dosing regimens when used alone and in drug-drug interactions (DDIs). A population PBPK-EO model of OSI was developed using physicochemical, biochemical, binding kinetic, and physiological properties, and then validated using nine clinical PK studies, observed EO study, and two clinical DDI studies. The PBPK-EO model demonstrated good consistency with observed data, with most prediction-to-observation ratios falling within the range of 0.7 to 1.3 for plasma AUC, C, C and intracranial free concentration. The simulated time-course of C797S occupancy by the PBPK model was much lower than T790M and L858R occupancy, providing an explanation for OSI on-target resistance to the C797S mutation. The PBPK model identified ABCB1 CL, albumin level, and EGFR expression as key factors affecting plasma C and intracranial EO for OSI. Additionally, PBPK-EO simulations indicated that the optimal dosing regimen for OSI in patients with brain metastases is either 80 mg once daily (OD) or 160 mg OD, or 40 mg or 80 mg twice daily (BID). When used concomitantly with CYP enzyme perpetrators, the PBPK-EO model suggested appropriate dosing regimens of 80 mg OD with fluvoxamine (FLUV) itraconazole (ITR) or fluvoxamine (FLUC) for co-administration and an increase to 160 mg OD with rifampicin (RIF) or efavirenz (EFA). In conclusion, the PBPK-EO model has been shown to be capable of simulating the pharmacokinetic concentration-time profiles and the time-course of EGFR engagement for OSI, as well as determining the optimum dosing in various clinical situations.
本研究旨在开发和验证一种结合表皮生长因子受体(EGFR)占有率(EO)模型的奥希替尼(OSI)的生理药代动力学(PBPK)模型,以预测患者人群中的血浆谷浓度(C)和颅内 EGFR(T790M 和 L858R 突变体)的时程。该 PBPK 模型还用于研究影响 OSI 药代动力学(PK)和颅内 EGFR 结合的关键因素,分析对靶突变 C797S 的耐药性,并确定单独使用和药物相互作用(DDI)时的最佳给药方案。使用理化性质、生化、结合动力学和生理特性开发了 OSI 的人群 PBPK-EO 模型,然后使用 9 项临床 PK 研究、观察性 EO 研究和 2 项临床 DDI 研究进行验证。PBPK-EO 模型与观察数据具有良好的一致性,大多数预测与观察比值在血浆 AUC、C、C 和颅内游离浓度的 0.7 到 1.3 范围内。PBPK 模型模拟的 C797S 占有率时间过程明显低于 T790M 和 L858R 占有率,为 OSI 对 C797S 突变的靶标耐药提供了解释。PBPK 模型确定 ABCB1 CL、白蛋白水平和 EGFR 表达是影响 OSI 血浆 C 和颅内 EO 的关键因素。此外,PBPK-EO 模拟表明,颅内转移患者 OSI 的最佳给药方案是每天 80mg 一次(OD)或 160mg OD,或每天 40mg 或 80mg 两次(BID)。当与 CYP 酶诱导剂同时使用时,PBPK-EO 模型建议适当的给药方案为:与氟伏沙明(FLUV)酮康唑(ITR)或氟伏沙明(FLUC)联合用药时为 80mg OD,与利福平(RIF)或依非韦伦(EFA)合用时增加至 160mg OD。总之,该 PBPK-EO 模型已被证明能够模拟 OSI 的药代动力学浓度-时间曲线和 EGFR 结合的时程,并确定各种临床情况下的最佳给药剂量。