Suppr超能文献

奥希替尼耐药的 EGFR 突变型肺癌对第一代可逆性 EGFR 抑制剂敏感,但在临床前模型和临床样本中最终会获得 EGFR T790M/C797S 耐药突变。

EGFR-Mutated Lung Cancers Resistant to Osimertinib through EGFR C797S Respond to First-Generation Reversible EGFR Inhibitors but Eventually Acquire EGFR T790M/C797S in Preclinical Models and Clinical Samples.

机构信息

Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.

Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.

出版信息

J Thorac Oncol. 2019 Nov;14(11):1995-2002. doi: 10.1016/j.jtho.2019.07.016. Epub 2019 Aug 1.

Abstract

INTRODUCTION

Osimertinib is approved for advanced EGFR-mutated NSCLC, and identification of on-target mechanisms of resistance (i.e., EGFR C797S) to this third-generation EGFR inhibitor are evolving. Whether durable control of subsequently osimertinib-resistant NSCLC with the EGFR-sensitizing mutation (SM)/C797S is possible with first-generation EGFR inhibitors (such as gefitinib or erlotinib) remains underreported, as does the resultant acquired resistance profile.

METHODS

We used N-ethyl-N-nitrosourea mutagenesis to determine the profile of EGFR SM/C797S preclinical models exposed to reversible EGFR inhibitors. In addition, we retrospectively probed a case of EGFR SM lung adenocarcinoma treated with first-line osimertinib, followed by second-line erlotinib in the setting of EGFR SM/C797S.

RESULTS

Use of N-ethyl-N-nitrosourea mutagenesis against the background of EGFR L858R/C797S in conjunction with administration of gefitinib revealed preferential outgrowth of cells with EGFR L858R/T790M/C797S. A patient with EGFR delE746_T751insV NSCLC was treated with osimertinib with sustained response for 10 months before acquiring EGFR C797S. The patient was subsequently treated with erlotinib, with response for a period of 4 months, but disease progression ensued. Liquid biopsy disclosed EGFR delE746_T751insV with T790M and C797S present in cis.

CONCLUSION

EGFR SM NSCLC can acquire resistance to osimertinib through development of the EGFR C797S mutation. In this clinical scenario, the tumor may respond transiently to reversible first-generation EGFR inhibitors (gefitinib or erlotinib), but evolving mechanisms of on-target resistance-in clinical specimens and preclinical systems-indicate that EGFR C797S along with EGFR T790M can evolve. This report adds to the growing understanding of tumor evolution or adaptability to sequential EGFR inhibition and augments support for exploring combination therapies to delay or prevent on-target resistance.

摘要

简介

奥希替尼获批用于治疗晚期 EGFR 突变型非小细胞肺癌,针对这种第三代 EGFR 抑制剂的靶向耐药机制(即 EGFR C797S)的鉴定正在不断发展。对于携带 EGFR 敏感突变(SM)/C797S 的奥希替尼耐药非小细胞肺癌患者,第一代 EGFR 抑制剂(如吉非替尼或厄洛替尼)是否能够持久控制疾病仍然报道较少,相应的获得性耐药谱也是如此。

方法

我们使用 N-乙基-N-亚硝基脲诱变剂来确定暴露于可逆性 EGFR 抑制剂的 EGFR SM/C797S 临床前模型的 EGFR 突变谱。此外,我们回顾性研究了一例一线奥希替尼治疗后发生 EGFR SM 肺腺癌的病例,在 EGFR SM/C797S 背景下二线使用厄洛替尼进行治疗。

结果

在 EGFR L858R/C797S 背景下使用 N-乙基-N-亚硝基脲诱变剂联合使用吉非替尼,发现更倾向于 EGFR L858R/T790M/C797S 细胞的选择性生长。一名携带 EGFR delE746_T751insV 非小细胞肺癌的患者接受奥希替尼治疗 10 个月后持续缓解,随后出现 EGFR C797S 突变。该患者随后接受厄洛替尼治疗,缓解持续了 4 个月,但随后疾病进展。液体活检显示 EGFR delE746_T751insV 同时存在 T790M 和 C797S。

结论

携带 EGFR SM 的非小细胞肺癌可能通过 EGFR C797S 突变获得对奥希替尼的耐药性。在这种临床情况下,肿瘤可能会对可逆的第一代 EGFR 抑制剂(吉非替尼或厄洛替尼)短暂应答,但在临床标本和临床前系统中,靶向耐药的不断演变机制表明,EGFR C797S 与 EGFR T790M 可以同时发生演变。本报告增加了对肿瘤对序贯 EGFR 抑制的进化或适应性的理解,并支持探索联合治疗以延迟或预防靶向耐药。

相似文献

引用本文的文献

1
Generative AI - Assisted Adaptive Cancer Therapy.生成式人工智能辅助的适应性癌症治疗
Cancer Control. 2025 Jan-Dec;32:10732748251349919. doi: 10.1177/10732748251349919. Epub 2025 Jun 18.
8
Cross-omics strategies and personalised options for lung cancer immunotherapy.多组学策略与肺癌免疫治疗的个体化选择
Front Immunol. 2024 Sep 25;15:1471409. doi: 10.3389/fimmu.2024.1471409. eCollection 2024.

本文引用的文献

1
Single and Dual Targeting of Mutant EGFR with an Allosteric Inhibitor.单靶点和双靶点突变型 EGFR 的变构抑制剂
Cancer Discov. 2019 Jul;9(7):926-943. doi: 10.1158/2159-8290.CD-18-0903. Epub 2019 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验