Cox Dezerae, Hatters Danny M
Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia.
Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
iScience. 2024 May 3;27(6):109891. doi: 10.1016/j.isci.2024.109891. eCollection 2024 Jun 21.
Key to a biologists' capacity to understand data is the ability to make meaningful conclusions about differences in experimental observations. Typically, data are noisy, and conventional methods rely on replicates to average out noise and enable univariate statistical tests to assign -values. Yet thresholding values to determine significance is controversial and often misleading, especially for omics datasets with few replicates. This study introduces PERCEPT, an alternative that transforms data using an ad-hoc scaling factor derived from values. By applying this method, low confidence effects are suppressed compared to high confidence ones, enabling clearer patterns to emerge from noisy datasets. The effectiveness of PERCEPT scaling is demonstrated using simulated datasets and published omics studies. The approach reduces the exclusion of datapoints, enhances accuracy, and enables nuanced interpretation of data. PERCEPT is easy to apply for the non-expert in statistics and provides researchers a straightforward way to improve data-driven analyses.
生物学家理解数据能力的关键在于能够对实验观察结果的差异得出有意义的结论。通常,数据存在噪声,传统方法依靠重复实验来平均噪声,并进行单变量统计检验以赋予p值。然而,设定阈值来确定显著性存在争议且常常具有误导性,尤其是对于重复实验较少的组学数据集。本研究引入了PERCEPT,这是一种使用从p值导出的临时缩放因子来转换数据的替代方法。通过应用此方法,与高置信度效应相比,低置信度效应得到抑制,从而使噪声数据集中能呈现出更清晰的模式。使用模拟数据集和已发表的组学研究证明了PERCEPT缩放的有效性。该方法减少了数据点的排除,提高了准确性,并能够对数据进行细致入微的解释。PERCEPT易于非统计学专业人员应用,为研究人员提供了一种改进数据驱动分析的直接方法。