Suppr超能文献

元认知的反向工程。

Reverse engineering of metacognition.

机构信息

Health and Medical University, Institute for Mind, Brain and Behavior, Potsdam, Germany.

Charité - Universitätsmedizin Berlin, Department of Psychiatry and Neurosciences, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.

出版信息

Elife. 2022 Sep 15;11:e75420. doi: 10.7554/eLife.75420.

Abstract

The human ability to introspect on thoughts, perceptions or actions - metacognitive ability - has become a focal topic of both cognitive basic and clinical research. At the same time it has become increasingly clear that currently available quantitative tools are limited in their ability to make unconfounded inferences about metacognition. As a step forward, the present work introduces a comprehensive modeling framework of metacognition that allows for inferences about metacognitive noise and metacognitive biases during the readout of decision values or at the confidence reporting stage. The model assumes that confidence results from a continuous but noisy and potentially biased transformation of decision values, described by a confidence link function. A canonical set of metacognitive noise distributions is introduced which differ, amongst others, in their predictions about metacognitive sign flips of decision values. Successful recovery of model parameters is demonstrated, and the model is validated on an empirical data set. In particular, it is shown that metacognitive noise and bias parameters correlate with conventional behavioral measures. Crucially, in contrast to these conventional measures, metacognitive noise parameters inferred from the model are shown to be independent of performance. This work is accompanied by a toolbox () that allows researchers to estimate key parameters of metacognition in confidence datasets.

摘要

人类对思想、感知或行为进行内省的能力——元认知能力——已成为认知基础和临床研究的焦点话题。与此同时,人们越来越清楚地认识到,目前可用的定量工具在对元认知进行无混淆推断方面的能力有限。作为一个前进的步骤,本工作引入了一个全面的元认知建模框架,允许在读取决策值或在置信度报告阶段时,对元认知噪声和元认知偏差进行推断。该模型假设置信度是由决策值的连续但有噪声和潜在偏差的转换产生的,由置信度链接函数来描述。引入了一组典型的元认知噪声分布,它们在决策值的元认知符号翻转预测方面存在差异。成功地恢复了模型参数,并在一个经验数据集上验证了该模型。特别是,结果表明元认知噪声和偏差参数与传统的行为测量相关。至关重要的是,与这些传统的测量方法相比,从模型中推断出的元认知噪声参数与表现无关。这项工作伴随着一个工具箱(),允许研究人员在置信度数据集上估计元认知的关键参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca14/9477496/fee7b4309935/elife-75420-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验