Agarwal Navneet, Dias Gaël, Dollfus Sonia
UNICAEN, ENSICAEN, CNRS, GREYC, Normandie Univ, 14000, Caen, France.
Service de Psychiatrie, CHU de Caen, 14000, Caen, France.
Brain Inform. 2024 Jun 4;11(1):14. doi: 10.1186/s40708-024-00227-w.
Depression is a serious mental illness that affects millions worldwide and consequently has attracted considerable research interest in recent years. Within the field of automated depression estimation, most researchers focus on neural network architectures while ignoring other research directions. Within this paper, we explore an alternate approach and study the impact of input representations on the learning ability of the models. In particular, we work with graph-based representations to highlight different aspects of input transcripts, both at the interview and corpus levels. We use sentence similarity graphs and keyword correlation graphs to exemplify the advantages of graphical representations over sequential models for binary classification problems within depression estimation. Additionally, we design multi-view architectures that split interview transcripts into question and answer views in order to take into account dialogue structure. Our experiments show the benefits of multi-view based graphical input encodings over sequential models and provide new state-of-the-art results for binary classification on the gold standard DAIC-WOZ dataset. Further analysis establishes our method as a means for generating meaningful insights and visual summaries of interview transcripts that can be used by medical professionals.
抑郁症是一种严重的精神疾病,影响着全球数百万人,因此近年来引起了相当大的研究兴趣。在自动抑郁症评估领域,大多数研究人员专注于神经网络架构,而忽略了其他研究方向。在本文中,我们探索了一种替代方法,并研究输入表示对模型学习能力的影响。具体而言,我们使用基于图的表示来突出输入文本在访谈和语料库层面的不同方面。我们使用句子相似度图和关键词相关图来例证图形表示在抑郁症评估中的二元分类问题上相对于序列模型的优势。此外,我们设计了多视图架构,将访谈文本拆分为问题和答案视图,以考虑对话结构。我们的实验展示了基于多视图的图形输入编码相对于序列模型的优势,并在黄金标准DAIC-WOZ数据集上的二元分类中提供了新的最新结果。进一步的分析将我们的方法确立为一种生成有意义的见解和访谈文本可视化摘要的手段,可供医学专业人员使用。