Suppr超能文献

DDI-MuG:用于药物相互作用提取的多方面图

DDI-MuG: Multi-aspect graphs for drug-drug interaction extraction.

作者信息

Yang Jie, Ding Yihao, Long Siqu, Poon Josiah, Han Soyeon Caren

机构信息

School of Computer Science, The University of Sydney, Sydney, NSW, Australia.

Department of Computer Science, University of Western Australia, Perth, WA, Australia.

出版信息

Front Digit Health. 2023 Apr 24;5:1154133. doi: 10.3389/fdgth.2023.1154133. eCollection 2023.

Abstract

INTRODUCTION

Drug-drug interaction (DDI) may lead to adverse reactions in patients, thus it is important to extract such knowledge from biomedical texts. However, previously proposed approaches typically focus on capturing sentence-aspect information while ignoring valuable knowledge concerning the whole corpus. In this paper, we propose a Multi-aspect Graph-based DDI extraction model, named DDI-MuG.

METHODS

We first employ a bio-specific pre-trained language model to obtain the token contextualized representations. Then we use two graphs to get syntactic information from input instance and word co-occurrence information within the entire corpus, respectively. Finally, we combine the representations of drug entities and verb tokens for the final classification.

RESULTS

To validate the effectiveness of the proposed model, we perform extensive experiments on two widely used DDI extraction dataset, DDIExtraction-2013 and TAC 2018. It is encouraging to see that our model outperforms all twelve state-of-the-art models.

DISCUSSION

In contrast to the majority of earlier models that rely on the black-box approach, our model enables visualization of crucial words and their interrelationships by utilizing edge information from two graphs. To the best of our knowledge, this is the first model that explores multi-aspect graphs to the DDI extraction task, and we hope it can establish a foundation for more robust multi-aspect works in the future.

摘要

引言

药物相互作用(DDI)可能会导致患者出现不良反应,因此从生物医学文本中提取此类知识非常重要。然而,先前提出的方法通常侧重于捕捉句子层面的信息,而忽略了有关整个语料库的有价值的知识。在本文中,我们提出了一种基于多方面图的DDI提取模型,名为DDI-MuG。

方法

我们首先使用特定于生物医学的预训练语言模型来获取词元的上下文表示。然后,我们分别使用两个图来从输入实例中获取句法信息以及整个语料库中的词共现信息。最后,我们结合药物实体和动词词元的表示进行最终分类。

结果

为了验证所提出模型的有效性,我们在两个广泛使用的DDI提取数据集DDIExtraction-2013和TAC 2018上进行了广泛的实验。令人鼓舞的是,我们的模型优于所有十二个最先进的模型。

讨论

与大多数依赖黑箱方法的早期模型不同,我们的模型通过利用来自两个图的边信息,能够可视化关键词及其相互关系。据我们所知,这是第一个探索多方面图用于DDI提取任务的模型,我们希望它能为未来更强大的多方面工作奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3430/10164961/99e2234486e6/fdgth-05-1154133-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验