Department of Information Technology, DMI College of Engineering, Chennai, Tamil Nadu, India.
Department of Software Engineering, New Uzbekistan University, Tashkent, Uzbekistan.
Med Biol Eng Comput. 2024 Nov;62(11):3311-3325. doi: 10.1007/s11517-024-03106-y. Epub 2024 Jun 4.
Melanoma is an uncommon and dangerous type of skin cancer. Dermoscopic imaging aids skilled dermatologists in detection, yet the nuances between melanoma and non-melanoma conditions complicate diagnosis. Early identification of melanoma is vital for successful treatment, but manual diagnosis is time-consuming and requires a dermatologist with training. To overcome this issue, this article proposes an Optimized Attention-Induced Multihead Convolutional Neural Network with EfficientNetV2-fostered melanoma classification using dermoscopic images (AIMCNN-ENetV2-MC). The input pictures are extracted from the dermoscopic images dataset. Adaptive Distorted Gaussian Matched Filter (ADGMF) is used to remove the noise and maximize the superiority of skin dermoscopic images. These pre-processed images are fed to AIMCNN. The AIMCNN-ENetV2 classifies acral melanoma and benign nevus. Boosted Chimp Optimization Algorithm (BCOA) optimizes the AIMCNN-ENetV2 classifier for accurate classification. The proposed AIMCNN-ENetV2-MC is implemented using Python. The proposed approach attains an outstanding overall accuracy of 98.75%, less computation time of 98 s compared with the existing models.
黑色素瘤是一种罕见且危险的皮肤癌。皮肤镜成像有助于有经验的皮肤科医生进行检测,但黑色素瘤和非黑色素瘤病变之间的细微差别使诊断变得复杂。早期发现黑色素瘤对于成功治疗至关重要,但手动诊断既耗时又需要经过培训的皮肤科医生。为了解决这个问题,本文提出了一种基于优化注意力诱导多头卷积神经网络和高效网络 V2 促进皮肤镜图像的黑色素瘤分类方法(AIMCNN-ENetV2-MC)。输入图像是从皮肤镜图像数据集中提取的。自适应扭曲高斯匹配滤波器(ADGMF)用于去除噪声并最大化皮肤镜图像的优势。这些预处理后的图像被输入到 AIMCNN 中。AIMCNN-ENetV2 对肢端黑色素瘤和良性痣进行分类。增强型黑猩猩优化算法(BCOA)对 AIMCNN-ENetV2 分类器进行优化,以实现准确的分类。该方法使用 Python 实现。与现有模型相比,所提出的方法的总体准确率达到了 98.75%,计算时间减少了 98 秒。