Professor and HoD, Department of Computer Science and Engineering, St. Ann's College of Engineering and Technology, Chirala, Andhra Pradesh, India.
Department of Management Programmes, KLEF Centre for Distance & Online Education, Koneru Lakshmaiah Education Foundation (Deemed to be University), Guntur, India.
Microsc Res Tech. 2024 Jun;87(6):1271-1285. doi: 10.1002/jemt.24506. Epub 2024 Feb 14.
Skin is the exposed part of the human body that constantly protected from UV rays, heat, light, dust, and other hazardous radiation. One of the most dangerous illnesses that affect people is skin cancer. A type of skin cancer called melanoma starts in the melanocytes, which regulate the colour in human skin. Reducing the fatality rate from skin cancer requires early detection and diagnosis of conditions like melanoma. In this article, a Self-attention based cycle-consistent generative adversarial network optimized with Archerfish Hunting Optimization Algorithm adopted Melanoma Classification (SACCGAN-AHOA-MC-DI) from dermoscopic images is proposed. Primarily, the input Skin dermoscopic images are gathered via the dataset of ISIC 2019. Then, the input Skin dermoscopic images is pre-processed using adjusted quick shift phase preserving dynamic range compression (AQSP-DRC) for removing noise and increase the quality of Skin dermoscopic images. These pre-processed images are fed to the piecewise fuzzy C-means clustering (PF-CMC) for ROI region segmentation. The segmented ROI region is supplied to the Hexadecimal Local Adaptive Binary Pattern (HLABP) to extract the Radiomic features, like Grayscale statistic features (standard deviation, mean, kurtosis, and skewness) together with Haralick Texture features (contrast, energy, entropy, homogeneity, and inverse different moments). The extracted features are fed to self-attention based cycle-consistent generative adversarial network (SACCGAN) which classifies the skin cancers as Melanocytic nevus, Basal cell carcinoma, Actinic Keratosis, Benign keratosis, Dermatofibroma, Vascular lesion, Squamous cell carcinoma and melanoma. In general, SACCGAN not adapt any optimization modes to define the ideal parameters to assure accurate classification of skin cancer. Hence, Archerfish Hunting Optimization Algorithm (AHOA) is considered to maximize the SACCGAN classifier, which categorizes the skin cancer accurately. The proposed method attains 23.01%, 14.96%, and 45.31% higher accuracy and 32.16%, 11.32%, and 24.56% lesser computational time evaluated to the existing methods, like melanoma prediction method for unbalanced data utilizing optimized Squeeze Net through bald eagle search optimization (CNN-BES-MC-DI), hyper-parameter optimized CNN depending on Grey wolf optimization algorithm (CNN-GWOA-MC-DI), DEANN incited skin cancer finding depending on fuzzy c-means clustering (DEANN-MC-DI). RESEARCH HIGHLIGHTS: This manuscript, self-attention based cycle-consistent. SACCGAN-AHOA-MC-DI method is implemented in Python. (SACCGAN-AHOA-MC-DI) from dermoscopic images is proposed. Adjusted quick shift phase preserving dynamic range compression (AQSP-DRC). Removing noise and increase the quality of Skin dermoscopic images.
皮肤是人体暴露在外的部分,它不断受到紫外线、热、光、灰尘和其他有害辐射的保护。影响人类的最危险疾病之一是皮肤癌。一种叫做黑色素瘤的皮肤癌始于调节人体皮肤颜色的黑素细胞。降低皮肤癌的死亡率需要早期发现和诊断黑色素瘤等疾病。在本文中,提出了一种基于自注意的循环一致生成对抗网络,该网络通过 Archerfish 狩猎优化算法进行了优化,用于从皮肤镜图像中进行黑色素瘤分类(SACCGAN-AHOA-MC-DI)。首先,通过 ISIC 2019 数据集收集输入的皮肤镜图像。然后,使用调整后的快速移动相保持动态范围压缩(AQSP-DRC)对输入的皮肤镜图像进行预处理,以去除噪声并提高皮肤镜图像的质量。这些预处理后的图像被馈送到分段模糊 C 均值聚类(PF-CMC)进行 ROI 区域分割。分割的 ROI 区域被提供给十六进制局部自适应二值模式(HLABP),以提取放射组学特征,例如灰度统计特征(标准差、均值、峰度和偏度)以及哈尔利克纹理特征(对比度、能量、熵、同质性和逆差矩)。提取的特征被输入到基于自注意的循环一致生成对抗网络(SACCGAN)中,该网络将皮肤癌分类为黑素细胞痣、基底细胞癌、光化性角化病、良性角化病、纤维瘤、血管病变、鳞状细胞癌和黑色素瘤。一般来说,SACCGAN 不采用任何优化模式来定义理想参数,以确保皮肤癌的准确分类。因此,考虑使用 Archerfish 狩猎优化算法(AHOA)来最大化 SACCGAN 分类器,从而准确地对皮肤癌进行分类。与现有的方法(如利用优化后的 Squeeze Net 通过秃鹫搜索优化(CNN-BES-MC-DI)进行的用于不平衡数据的黑色素瘤预测方法、基于灰狼优化算法(CNN-GWOA-MC-DI)的超参数优化 CNN、基于模糊 C 均值聚类(DEANN-MC-DI)的启发式皮肤癌发现的 DEANN)相比,所提出的方法在评估皮肤癌的准确性方面提高了 23.01%、14.96%和 45.31%,在计算时间方面降低了 32.16%、11.32%和 24.56%。研究亮点:本文提出了一种基于自注意的循环一致的 SACCGAN-AHOA-MC-DI 方法,并在 Python 中实现。(SACCGAN-AHOA-MC-DI)从皮肤镜图像中提出。调整后的快速移动相保持动态范围压缩(AQSP-DRC)。去除噪声并提高皮肤镜图像的质量。