文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

2016 年国际皮肤成像协作国际研讨会生物医学成像挑战赛的结果:比较计算机算法和皮肤科医生对基于皮肤镜图像的黑色素瘤诊断的准确性。

Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images.

机构信息

Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.

IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York.

出版信息

J Am Acad Dermatol. 2018 Feb;78(2):270-277.e1. doi: 10.1016/j.jaad.2017.08.016. Epub 2017 Sep 29.


DOI:10.1016/j.jaad.2017.08.016
PMID:28969863
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5768444/
Abstract

BACKGROUND: Computer vision may aid in melanoma detection. OBJECTIVE: We sought to compare melanoma diagnostic accuracy of computer algorithms to dermatologists using dermoscopic images. METHODS: We conducted a cross-sectional study using 100 randomly selected dermoscopic images (50 melanomas, 44 nevi, and 6 lentigines) from an international computer vision melanoma challenge dataset (n = 379), along with individual algorithm results from 25 teams. We used 5 methods (nonlearned and machine learning) to combine individual automated predictions into "fusion" algorithms. In a companion study, 8 dermatologists classified the lesions in the 100 images as either benign or malignant. RESULTS: The average sensitivity and specificity of dermatologists in classification was 82% and 59%. At 82% sensitivity, dermatologist specificity was similar to the top challenge algorithm (59% vs. 62%, P = .68) but lower than the best-performing fusion algorithm (59% vs. 76%, P = .02). Receiver operating characteristic area of the top fusion algorithm was greater than the mean receiver operating characteristic area of dermatologists (0.86 vs. 0.71, P = .001). LIMITATIONS: The dataset lacked the full spectrum of skin lesions encountered in clinical practice, particularly banal lesions. Readers and algorithms were not provided clinical data (eg, age or lesion history/symptoms). Results obtained using our study design cannot be extrapolated to clinical practice. CONCLUSION: Deep learning computer vision systems classified melanoma dermoscopy images with accuracy that exceeded some but not all dermatologists.

摘要

背景:计算机视觉可能有助于黑色素瘤的检测。

目的:我们旨在比较计算机算法和皮肤科医生使用皮肤镜图像诊断黑色素瘤的准确性。

方法:我们进行了一项横断面研究,使用了来自国际计算机视觉黑色素瘤挑战赛数据集的 100 张随机选择的皮肤镜图像(50 张黑色素瘤、44 张痣和 6 张黑子)(n=379),以及 25 个团队的个别算法结果。我们使用了 5 种方法(非学习和机器学习)将个别自动预测组合成“融合”算法。在一项配套研究中,8 名皮肤科医生将 100 张图像中的病变分类为良性或恶性。

结果:皮肤科医生分类的平均敏感性和特异性分别为 82%和 59%。在 82%的敏感性下,皮肤科医生的特异性与挑战赛的顶级算法相似(59%比 62%,P=0.68),但低于表现最好的融合算法(59%比 76%,P=0.02)。最佳融合算法的接收器操作特征面积大于皮肤科医生的平均接收器操作特征面积(0.86 比 0.71,P=0.001)。

局限性:该数据集缺乏临床实践中遇到的各种皮肤病变,特别是常见病变。读者和算法没有提供临床数据(例如年龄或病变病史/症状)。使用我们的研究设计获得的结果不能外推到临床实践。

结论:深度学习计算机视觉系统对黑色素瘤皮肤镜图像的分类准确性超过了一些但不是所有皮肤科医生。

相似文献

[1]
Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images.

J Am Acad Dermatol. 2017-9-29

[2]
Computer algorithms show potential for improving dermatologists' accuracy to diagnose cutaneous melanoma: Results of the International Skin Imaging Collaboration 2017.

J Am Acad Dermatol. 2019-7-12

[3]
Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists.

Ann Oncol. 2018-8-1

[4]
Skin lesion classification with ensembles of deep convolutional neural networks.

J Biomed Inform. 2018-8-10

[5]
Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks.

Eur J Cancer. 2019-8-14

[6]
Deep neural networks are superior to dermatologists in melanoma image classification.

Eur J Cancer. 2019-8-8

[7]
Computer-assisted diagnosis techniques (dermoscopy and spectroscopy-based) for diagnosing skin cancer in adults.

Cochrane Database Syst Rev. 2018-12-4

[8]
Ugly Duckling Sign as a Major Factor of Efficiency in Melanoma Detection.

JAMA Dermatol. 2017-4-1

[9]
Validity and Reliability of Dermoscopic Criteria Used to Differentiate Nevi From Melanoma: A Web-Based International Dermoscopy Society Study.

JAMA Dermatol. 2016-7-1

[10]
Artificial Intelligence and Its Effect on Dermatologists' Accuracy in Dermoscopic Melanoma Image Classification: Web-Based Survey Study.

J Med Internet Res. 2020-9-11

引用本文的文献

[1]
[Artificial intelligence in total body photography, digital dermoscopy and high-resolution dermoscopy].

Dermatologie (Heidelb). 2025-8-28

[2]
Transfer Learning-Based Ensemble of CNNs and Vision Transformers for Accurate Melanoma Diagnosis and Image Retrieval.

Diagnostics (Basel). 2025-7-31

[3]
Automatic melanoma and non-melanoma skin cancer diagnosis using advanced adaptive fine-tuned convolution neural networks.

Discov Oncol. 2025-4-30

[4]
Building Better Deep Learning Models Through Dataset Fusion: A Case Study in Skin Cancer Classification with Hyperdatasets.

Diagnostics (Basel). 2025-2-3

[5]
Artificial Intelligence in the Non-Invasive Detection of Melanoma.

Life (Basel). 2024-12-4

[6]
Effect of patient-contextual skin images in human- and artificial intelligence-based diagnosis of melanoma: Results from the 2020 SIIM-ISIC melanoma classification challenge.

J Eur Acad Dermatol Venereol. 2024-12-8

[7]
DERM12345: A Large, Multisource Dermatoscopic Skin Lesion Dataset with 40 Subclasses.

Sci Data. 2024-11-28

[8]
Skin Cancer Diagnosis by Lesion, Physician, and Examination Type: A Systematic Review and Meta-Analysis.

JAMA Dermatol. 2025-2-1

[9]
The Role of Artificial Intelligence in the Diagnosis of Melanoma.

Cureus. 2024-9-20

[10]
Deep Learning Techniques for the Dermoscopic Differential Diagnosis of Benign/Malignant Melanocytic Skin Lesions: From the Past to the Present.

Bioengineering (Basel). 2024-7-26

本文引用的文献

[1]
Dermatologist-level classification of skin cancer with deep neural networks.

Nature. 2017-2-2

[2]
Screening for Skin Cancer: US Preventive Services Task Force Recommendation Statement.

JAMA. 2016-7-26

[3]
The study of nevi in children: Principles learned and implications for melanoma diagnosis.

J Am Acad Dermatol. 2016-10

[4]
Computer-aided classification of melanocytic lesions using dermoscopic images.

J Am Acad Dermatol. 2015-9-19

[5]
Clinical performance of the Nevisense system in cutaneous melanoma detection: an international, multicentre, prospective and blinded clinical trial on efficacy and safety.

Br J Dermatol. 2014-11

[6]
Performance of a dermoscopy-based computer vision system for the diagnosis of pigmented skin lesions compared with visual evaluation by experienced dermatologists.

Artif Intell Med. 2013-12-9

[7]
The performance of MelaFind: a prospective multicenter study.

Arch Dermatol. 2011-2

[8]
Evaluation of cutaneous melanoma thickness by digital dermoscopy analysis: a retrospective study.

Melanoma Res. 2010-6

[9]
Computer versus human diagnosis of melanoma: evaluation of the feasibility of an automated diagnostic system in a prospective clinical trial.

Melanoma Res. 2009-6

[10]
Systematic review of dermoscopy and digital dermoscopy/ artificial intelligence for the diagnosis of melanoma.

Br J Dermatol. 2009-3-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索