Suppr超能文献

通过增强数据增强和特征提取实现的少样本学习。

Few-Shot Learning With Enhancements to Data Augmentation and Feature Extraction.

作者信息

Zhang Yourun, Gong Maoguo, Li Jianzhao, Feng Kaiyuan, Zhang Mingyang

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Apr;36(4):6655-6668. doi: 10.1109/TNNLS.2024.3400592. Epub 2025 Apr 4.

Abstract

The few-shot image classification task is to enable a model to identify novel classes by using only a few labeled samples as references. In general, the more knowledge a model has, the more robust it is when facing novel situations. Although directly introducing large amounts of new training data to acquire more knowledge is an attractive solution, it violates the purpose of few-shot learning with respect to reducing dependence on big data. Another viable option is to enable the model to accumulate knowledge more effectively from existing data, i.e., improve the utilization of existing data. In this article, we propose a new data augmentation method called self-mixup (SM) to assemble different augmented instances of the same image, which facilitates the model to more effectively accumulate knowledge from limited training data. In addition to the utilization of data, few-shot learning faces another challenge related to feature extraction. Specifically, existing metric-based few-shot classification methods rely on comparing the extracted features of the novel classes, but the widely adopted downsampling structures in various networks can lead to feature degradation due to the violation of the sampling theorem, and the degraded features are not conducive to robust classification. To alleviate this problem, we propose a calibration-adaptive downsampling (CADS) that calibrates and utilizes the characteristics of different features, which can facilitate robust feature extraction and benefit classification. By improving data utilization and feature extraction, our method shows superior performance on four widely adopted few-shot classification datasets.

摘要

少样本图像分类任务是使模型仅通过使用少量有标签样本作为参考来识别新的类别。一般来说,模型拥有的知识越多,在面对新情况时就越稳健。虽然直接引入大量新的训练数据以获取更多知识是一个有吸引力的解决方案,但这违背了少样本学习减少对大数据依赖的目的。另一个可行的选择是使模型能够从现有数据中更有效地积累知识,即提高现有数据的利用率。在本文中,我们提出了一种名为自混合(SM)的新数据增强方法,用于组合同一图像的不同增强实例,这有助于模型从有限的训练数据中更有效地积累知识。除了数据利用之外,少样本学习还面临与特征提取相关的另一个挑战。具体而言,现有的基于度量的少样本分类方法依赖于比较新类别的提取特征,但各种网络中广泛采用的下采样结构可能会由于违反采样定理而导致特征退化,并且退化的特征不利于稳健分类。为了缓解这个问题,我们提出了一种校准自适应下采样(CADS)方法,该方法校准并利用不同特征的特性,这可以促进稳健的特征提取并有利于分类。通过提高数据利用率和特征提取,我们的方法在四个广泛采用的少样本分类数据集上表现出优异的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验