Suppr超能文献

基于特征金字塔的自适应原型少样本图像分类方法

Adaptive prototype few-shot image classification method based on feature pyramid.

作者信息

Shen Linshan, Feng Xiang, Xu Li, Ding Weiyue

机构信息

College of Computer Science And Technology, Harbin Engineering University, Harbin, HeiLongJiang, China.

School of Mathematics, Harbin Institute of Technology, Harbin, HeiLongJiang, China.

出版信息

PeerJ Comput Sci. 2024 Oct 1;10:e2322. doi: 10.7717/peerj-cs.2322. eCollection 2024.

Abstract

Few-shot learning aims to enable machines to recognize unseen novel classes using limited samples akin to human capabilities. Metric learning is a crucial approach to addressing this challenge, with its performance primarily dependent on the effectiveness of feature extraction and prototype computation. This article introduces an Adaptive Prototype few-shot image classification method based on Feature Pyramid (APFP). APFP employs a novel feature extraction method called FResNet, which builds upon the ResNet architecture and leverages a feature pyramid structure to retain finer details. In the 5-shot scenario, traditional methods for computing average prototypes exhibit limitations due to the typically diverse and uneven distribution of samples, where simple means may inadequately reflect such diversity. To address this issue, APFP proposes an Adaptive Prototype method (AP) that dynamically computes class prototypes of the support set based on the similarity between support set samples and query samples. Experimental results demonstrate that APFP achieves 67.98% and 85.32% accuracy in the 5-way 1-shot and 5-way 5-shot scenarios on the MiniImageNet dataset, respectively, and 84.02% and 94.44% accuracy on the CUB dataset. These results indicate that the proposed APFP method addresses the few-shot learning problem.

摘要

少样本学习旨在使机器能够像人类一样,利用有限的样本识别未见的新类别。度量学习是应对这一挑战的关键方法,其性能主要取决于特征提取和原型计算的有效性。本文介绍了一种基于特征金字塔的自适应原型少样本图像分类方法(APFP)。APFP采用了一种名为FResNet的新颖特征提取方法,该方法基于ResNet架构构建,并利用特征金字塔结构来保留更精细的细节。在5样本场景中,由于样本通常具有多样且不均匀的分布,传统的计算平均原型的方法存在局限性,简单的均值可能无法充分反映这种多样性。为了解决这个问题,APFP提出了一种自适应原型方法(AP),该方法基于支持集样本与查询样本之间的相似度动态计算支持集的类原型。实验结果表明,APFP在MiniImageNet数据集的5分类1样本和5分类5样本场景中分别达到了67.98%和85.32%的准确率,在CUB数据集上分别达到了84.02%和94.44%的准确率。这些结果表明,所提出的APFP方法解决了少样本学习问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6100/11622911/3e7ebead41fb/peerj-cs-10-2322-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验