Ruckriegel Max J, Gächter Lisa M, Kealhofer David, Bahrami Panah Mohsen, Tong Chuyao, Adam Christoph, Masseroni Michele, Duprez Hadrien, Garreis Rebekka, Watanabe Kenji, Taniguchi Takashi, Wallraff Andreas, Ihn Thomas, Ensslin Klaus, Huang Wei Wister
Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland.
Quantum Center, ETH Zürich, CH-8093 Zürich, Switzerland.
Nano Lett. 2024 Jun 4;24(24):7508-14. doi: 10.1021/acs.nanolett.4c01791.
We implement circuit quantum electrodynamics (cQED) with quantum dots in bilayer graphene, a maturing material platform that can host long-lived spin and valley states. Our device combines a high-impedance ( ≈ 1 kΩ) superconducting microwave resonator with a double quantum dot electrostatically defined in a graphene-based van der Waals heterostructure. Electric dipole coupling between the subsystems allows the resonator to sense the electric susceptibility of the double quantum dot from which we reconstruct its charge stability diagram. We achieve sensitive and fast detection of the interdot transition with a signal-to-noise ratio of 3.5 within 1 μs integration time. The charge-photon interaction is quantified in the dispersive and resonant regimes by comparing the resonator response to input-output theory, yielding a coupling strength of /2π = 49.7 MHz. Our results introduce cQED as a probe for quantum dots in van der Waals materials and indicate a path toward coherent charge-photon coupling with bilayer graphene quantum dots.
我们利用双层石墨烯中的量子点实现了电路量子电动力学(cQED),双层石墨烯是一种成熟的材料平台,能够承载长寿命的自旋和能谷态。我们的器件将一个高阻抗(≈1 kΩ)的超导微波谐振器与一个在基于石墨烯的范德华异质结构中通过静电定义的双量子点相结合。子系统之间的电偶极耦合使谐振器能够感知双量子点的电极化率,由此我们重构了其电荷稳定性图。我们在1 μs的积分时间内实现了对量子点间跃迁的灵敏且快速的检测,信噪比为3.5。通过将谐振器响应与输入-输出理论进行比较,在色散和共振区域对电荷-光子相互作用进行了量化,得到耦合强度为/2π = 49.7 MHz。我们的结果将cQED引入作为探测范德华材料中量子点的手段,并指明了一条通向与双层石墨烯量子点实现相干电荷-光子耦合的路径。