Key Laboratory of Quantum Information, CAS , University of Science and Technology of China , Hefei , Anhui 230026 , China.
Synergetic Innovation Center of Quantum Information & Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China.
Nano Lett. 2018 Mar 14;18(3):2091-2097. doi: 10.1021/acs.nanolett.8b00272. Epub 2018 Feb 27.
Realizing a strong coupling between spin and resonator is an important issue for scalable quantum computation in semiconductor systems. Benefiting from the advantages of a strong spin-orbit coupling strength and long coherence time, the Ge hut wire, which is proposed to be site-controlled grown for scalability, is considered to be a promising candidate to achieve this goal. Here we present a hybrid architecture in which an on-chip superconducting microwave resonator is coupled to the holes in a Ge quantum dot. The charge stability diagram can be obtained from the amplitude and phase responses of the resonator independently from the DC transport measurement. Furthermore, we estimate the hole-resonator coupling rate of g/2π = 148 MHz in the single quantum dot-resonator system and estimate the spin-resonator coupling rate g/2π to be in the range 2-4 MHz. We anticipate that strong coupling between hole spins and microwave photons in a Ge hut wire is feasible with optimized schemes in the future.
实现自旋和共振器之间的强耦合对于半导体系统中的可扩展量子计算是一个重要的问题。得益于强自旋轨道耦合强度和长相干时间的优势,拟议通过位点控制生长来实现可扩展性的 Ge 量子点线,被认为是实现这一目标的有前途的候选者。在这里,我们提出了一种混合结构,其中片上超导微波共振器与 Ge 量子点中的空穴耦合。电荷稳定图可以从共振器的幅度和相位响应中独立于直流传输测量获得。此外,我们在单个量子点-共振器系统中估计了空穴-共振器耦合率 g/2π=148MHz,并估计了自旋-共振器耦合率 g/2π在 2-4MHz 的范围内。我们预计,在未来优化方案的情况下,Ge 量子点线中的空穴自旋和微波光子之间的强耦合是可行的。