Advanced Device Laboratory , RIKEN , Wako , Saitama 351-0198 , Japan.
Department of Physics , Tokyo University of Science , Kagurazaka, Tokyo 162-8601 , Japan.
Nano Lett. 2019 Feb 13;19(2):1052-1060. doi: 10.1021/acs.nanolett.8b04343. Epub 2019 Jan 17.
A controllable and coherent light-matter interface is an essential element for a scalable quantum information processor. Strong coupling to an on-chip cavity has been accomplished in various electron quantum dot systems, but rarely explored in the hole systems. Here we demonstrate a hybrid architecture comprising a microwave transmission line resonator controllably coupled to a hole charge qubit formed in a Ge/Si core/shell nanowire (NW), which is a natural one-dimensional hole gas with a strong spin-orbit interaction (SOI) and lack of nuclear spin scattering, potentially enabling fast spin manipulation by electric manners and long coherence times. The charge qubit is established in a double quantum dot defined by local electrical gates. Qubit transition energy can be independently tuned by the electrochemical potential difference and the tunnel coupling between the adjacent dots, opening transverse (σ ) and longitudinal (σ ) degrees of freedom for qubit operation and interaction. As the qubit energy is swept across the photon level, the coupling with resonator is thus switched on and off, as detected by resonator transmission spectroscopy. The observed resonance dynamics is replicated by a complete quantum numerical simulation considering an efficient charge dipole-photon coupling with a strength up to 2π × 55 MHz, yielding an estimation of the spin-resonator coupling rate through SOI to be about 10 MHz. The results inspire the future researches on the coherent hole-photon interaction in Ge/Si nanowires.
可控且相干的光物质界面是可扩展量子信息处理器的基本要素。在各种电子量子点系统中已经实现了与片上腔的强耦合,但在空穴系统中很少被探索。在这里,我们展示了一种混合架构,该架构由可控制地耦合到在 Ge/Si 核/壳纳米线 (NW) 中形成的空穴电荷量子比特的微波传输线谐振器组成,这是一种具有强自旋轨道相互作用 (SOI) 且缺乏核自旋散射的天然一维空穴气体,有望通过电方式实现快速自旋操纵和长相干时间。电荷量子比特由局部电门定义的双量子点建立。量子比特跃迁能量可以通过电化学势差和相邻点之间的隧道耦合独立调节,从而为量子比特操作和相互作用打开横向 (σ) 和纵向 (σ) 自由度。当量子比特能量扫过光子能级时,与谐振器的耦合就会打开和关闭,这可以通过谐振器传输光谱检测到。观察到的共振动力学通过考虑与强度高达 2π×55 MHz 的有效电荷偶极子-光子耦合的完整量子数值模拟来复制,从而通过 SOI 对自旋-谐振器耦合速率进行了约 10 MHz 的估计。这些结果激发了未来在 Ge/Si 纳米线中进行相干空穴-光子相互作用的研究。