Department of Biomedical Engineering, University of Calgary, Calgary, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada.
McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Department of Radiology, University of Calgary, Calgary, Canada.
Bone. 2024 Oct;187:117144. doi: 10.1016/j.bone.2024.117144. Epub 2024 Jun 2.
Standard microarchitectural analysis of bone using micro-computed tomography produces a large number of parameters that quantify the structure of the trabecular network. Analyses that perform statistical tests on many parameters are at elevated risk of making Type I errors. However, when multiple testing correction procedures are applied, the risk of Type II errors is elevated if the parameters being tested are strongly correlated. In this article, we argue that four commonly used trabecular microarchitectural parameters (thickness, separation, number, and bone volume fraction) are interdependent and describe only two independent properties of the trabecular network. We first derive theoretical relationships between the parameters based on their geometric definitions. Then, we analyze these relationships with an aggregated in vivo dataset with 2987 images from 1434 participants and a synthetically generated dataset with 144 images using principal component analysis (PCA) and linear regression analysis. With PCA, when trabecular thickness, separation, number, and bone volume fraction are combined, we find that 92 % to 97 % of the total variance in the data is explained by the first two principal components. With linear regressions, we find high coefficients of determination (0.827-0.994) and fitted coefficients within expected ranges. These findings suggest that to maximize statistical power in future studies, only two of trabecular thickness, separation, number and bone volume fraction should be used for statistical testing.
使用微计算机断层扫描对骨骼进行标准的微观结构分析会产生大量参数,这些参数可量化小梁网络的结构。对许多参数执行统计检验的分析存在犯第一类错误的风险。然而,如果正在测试的参数具有很强的相关性,则应用多重测试校正程序会增加犯第二类错误的风险。在本文中,我们认为四个常用的小梁微观结构参数(厚度、分离、数量和骨体积分数)是相互依赖的,并且仅描述了小梁网络的两个独立特性。我们首先根据它们的几何定义推导出参数之间的理论关系。然后,我们使用主成分分析(PCA)和线性回归分析,对来自 1434 名参与者的 2987 张图像的聚合体内数据集和使用 144 张图像的合成生成数据集分析这些关系。通过 PCA,当将小梁厚度、分离、数量和骨体积分数组合在一起时,我们发现数据中的总方差的 92%到 97%由前两个主成分解释。通过线性回归,我们发现高决定系数(0.827-0.994)和拟合系数在预期范围内。这些发现表明,为了在未来的研究中最大限度地提高统计功效,仅应使用小梁厚度、分离、数量和骨体积分数中的两个进行统计检验。