文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

镁铁氧体磁性纳米粒子的光催化、抗菌和抗生物膜活性。

Photocatalytic, antimicrobial and antibiofilm activities of MgFeO magnetic nanoparticles.

机构信息

Department of Basic Medical Sciences, Faculty of Medicine, Galala University, New Galala City, Suez, Egypt.

Department of Microbiology and Immunology, Faculty of Medicine, Tanta University, Tanta, Egypt.

出版信息

Sci Rep. 2024 Jun 5;14(1):12877. doi: 10.1038/s41598-024-62868-5.


DOI:10.1038/s41598-024-62868-5
PMID:38834648
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11150482/
Abstract

This study reports the antibacterial and antibiofilm activities of Magnesium ferrite nanoparticles (MgFeO) against gram-positive and gram-negative bacteria. The photocatalytic degradation of Carbol Fuchsin (CF) dye (a class of dyestuffs that are resistant to biodegradation) under the influence of UV-light irradiation is also studied. The crystalline magnesium ferrite (MgFeO) nanoparticles were synthesized using the co-precipitation method. The morphology of the resulting nanocomposite was examined using scanning electron microscopy (SEM), while transmission electron microscopy (TEM) was employed for further characterization of particle morphology and size. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) were utilized to analyze the crystalline structure, chemical composition, and surface area, respectively. Optical properties were evaluated using UV-Vis spectroscopy. The UV-assisted photocatalytic performance of MgFeO nanoparticles was assessed by studying the decolorization of Carbol fuchsin (CF) azo dye. The crystallite size of the MgFeO nanoparticles at the (311) plane, the most prominent peak, was determined to be 28.5 nm. The photocatalytic degradation of 10 ppm CF using 15 mg of MgFeO nanoparticles resulted in a significant 96% reduction after 135 min at ambient temperature (25 °C) and a pH value of 9. Additionally, MgFeO nanoparticles exhibited potent antibacterial activity against E. coli and S. aureus in a dose dependent manner with maximum utilized concentration of 30 µg/ml. Specifically, MgFeO nanoparticles demonstrated substantial antibacterial activity via disk diffusion and microbroth dilution tests with zones of inhibition and minimum inhibitory concentrations (MIC) for E. coli (26.0 mm, 1.25 µg/ml) and S. aureus (23.0 mm, 2.5 µg/ml), respectively. Moreover, 10.0 µg/ml of MgFeO nanoparticles elicited marked percent reduction in biofilm formation by E. coli (89%) followed by S. aureus (78.5%) after treatment. In conclusion, MgFeO nanoparticles demonstrated efficient dye removal capabilities along with significant antimicrobial and antibiofilm activity against gram-positive and gram-negative bacterial strains suggesting their potential as promising antimicrobial and detoxifying agents.

摘要

本研究报告了镁铁氧体纳米粒子(MgFeO)对革兰氏阳性和革兰氏阴性细菌的抗菌和抗生物膜活性。还研究了在 UV 光照射下 Carbol Fuchsin(CF)染料(一类不易生物降解的染料)的光催化降解。使用共沉淀法合成了结晶镁铁氧体(MgFeO)纳米粒子。使用扫描电子显微镜(SEM)检查所得纳米复合材料的形态,而使用透射电子显微镜(TEM)进一步表征颗粒形态和尺寸。傅里叶变换红外(FTIR)光谱和 X 射线衍射(XRD)分别用于分析晶体结构、化学成分和表面积。使用紫外可见光谱评估光学性质。通过研究 Carbol fuchsin(CF)偶氮染料的脱色来评估 MgFeO 纳米粒子的紫外辅助光催化性能。在(311)平面上,最突出的峰,MgFeO 纳米粒子的晶粒度确定为 28.5nm。在环境温度(25°C)和 pH 值为 9 的条件下,使用 15mg MgFeO 纳米粒子对 10ppm CF 的光催化降解在 135 分钟后达到了 96%的显著减少。此外,MgFeO 纳米粒子对大肠杆菌和金黄色葡萄球菌表现出剂量依赖性的强抗菌活性,最大利用率浓度为 30µg/ml。具体来说,MgFeO 纳米粒子通过抑菌圈扩散和微孔稀释试验表现出显著的抗菌活性,对大肠杆菌的抑菌圈和最小抑菌浓度(MIC)分别为 26.0mm 和 1.25µg/ml,对金黄色葡萄球菌的抑菌圈和 MIC 分别为 23.0mm 和 2.5µg/ml。此外,10.0µg/ml 的 MgFeO 纳米粒子对大肠杆菌(89%)和金黄色葡萄球菌(78.5%)生物膜形成的抑制率显著降低。总之,MgFeO 纳米粒子表现出高效的染料去除能力,以及对革兰氏阳性和革兰氏阴性细菌菌株的显著抗菌和抗生物膜活性,表明其作为有前途的抗菌和解毒剂的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db58/11150482/71442c9e70e7/41598_2024_62868_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db58/11150482/136bb65dc259/41598_2024_62868_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db58/11150482/495e921124ab/41598_2024_62868_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db58/11150482/4df6af24eb5b/41598_2024_62868_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db58/11150482/a5bc307a4ea3/41598_2024_62868_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db58/11150482/4a11fc442376/41598_2024_62868_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db58/11150482/ec321d37774a/41598_2024_62868_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db58/11150482/c0f1b2ba0247/41598_2024_62868_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db58/11150482/e1922757a11b/41598_2024_62868_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db58/11150482/f7c650fcb348/41598_2024_62868_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db58/11150482/56b44d881def/41598_2024_62868_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db58/11150482/690079fca890/41598_2024_62868_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db58/11150482/71442c9e70e7/41598_2024_62868_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db58/11150482/136bb65dc259/41598_2024_62868_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db58/11150482/495e921124ab/41598_2024_62868_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db58/11150482/4df6af24eb5b/41598_2024_62868_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db58/11150482/a5bc307a4ea3/41598_2024_62868_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db58/11150482/4a11fc442376/41598_2024_62868_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db58/11150482/ec321d37774a/41598_2024_62868_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db58/11150482/c0f1b2ba0247/41598_2024_62868_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db58/11150482/e1922757a11b/41598_2024_62868_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db58/11150482/f7c650fcb348/41598_2024_62868_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db58/11150482/56b44d881def/41598_2024_62868_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db58/11150482/690079fca890/41598_2024_62868_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db58/11150482/71442c9e70e7/41598_2024_62868_Fig12_HTML.jpg

相似文献

[1]
Photocatalytic, antimicrobial and antibiofilm activities of MgFeO magnetic nanoparticles.

Sci Rep. 2024-6-5

[2]
Unveiling the photocatalytic and antimicrobial activities of star-shaped gold nanoparticles under visible spectrum.

Sci Rep. 2025-1-7

[3]
Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles.

Microb Pathog. 2018-11-28

[4]
Green synthesis of Ag, Se, and AgSe nanoparticles by Pseudomonas aeruginosa: characterization and their biological and photocatalytic applications.

Folia Microbiol (Praha). 2024-6

[5]
Green-synthesized α-FeO-nanoparticles as potent antibacterial, anti-biofilm and anti-virulence agent against pathogenic bacteria.

BMC Microbiol. 2024-12-23

[6]
Antimicrobial synergism and antibiofilm activity of amoxicillin loaded citric acid-magnesium ferrite nanocomposite: Effect of UV-illumination, and membrane leakage reaction mechanism.

Microb Pathog. 2022-3

[7]
Bioinspired ferromagnetic NiFeO nanoparticles: Eradication of fungal and drug-resistant bacterial pathogens and their established biofilm.

Microb Pathog. 2024-8

[8]
Biosynthesis of iron nanoparticles using Trigonella foenum-graecum seed extract for photocatalytic methyl orange dye degradation and antibacterial applications.

J Photochem Photobiol B. 2018-4-17

[9]
An Eco-friendly Approach to ZnO NP Synthesis Using Blanco Peel/Extract: Characterization and Antibacterial and Photocatalytic Activity.

ACS Appl Bio Mater. 2024-5-20

[10]
Potential mechanism of gallic acid-coated iron oxide nanoparticles against associated genes of Klebsiella pneumoniae capsule, antibacterial and antibiofilm.

Microsc Res Tech. 2024-11

引用本文的文献

[1]
Biomedical and environmental applications via nanobiocatalysts and enzyme immobilization.

Eur J Med Res. 2025-6-21

[2]
Merits photocatalytic activity of rGO/zinc copper ferrite magnetic nanocatalyst for photodegradation of methylene blue (MB) dye.

Discov Nano. 2025-1-4

[3]
Development of novel reduced graphene oxide/metalloporphyrin nanocomposite with photocatalytic and antimicrobial activity for potential wastewater treatment and medical applications.

Sci Rep. 2024-11-13

[4]
Gamma-irradiated copper-based metal organic framework nanocomposites for photocatalytic degradation of water pollutants and disinfection of some pathogenic bacteria and fungi.

BMC Microbiol. 2024-11-6

本文引用的文献

[1]
Eco synthesized chitosan/zinc oxide nanocomposites as the next generation of nano-delivery for antibacterial, antioxidant, antidiabetic potential, and chronic wound repair.

Int J Biol Macromol. 2023-7-1

[2]
Promising photocatalytic and antimicrobial activity of novel capsaicin coated cobalt ferrite nanocatalyst.

Sci Rep. 2023-4-1

[3]
Porous Materials for Water Purification.

Angew Chem Int Ed Engl. 2023-3-6

[4]
Genetic and compositional analysis of biofilm formed by isolated from food contact surfaces.

Front Microbiol. 2022-12-2

[5]
Exploring phytochemical composition, photocatalytic, antibacterial, and antifungal efficacies of Au NPs supported by Cymbopogon flexuosus essential oil.

Sci Rep. 2022-8-22

[6]
Antimicrobial Susceptibility Testing for Enterococci.

J Clin Microbiol. 2022-9-21

[7]
Merits of photocatalytic and antimicrobial applications of gamma-irradiated Co Ni FeO/SiO/TiO; = 0.9 nanocomposite for pyridine removal and pathogenic bacteria/fungi disinfection: implication for wastewater treatment.

RSC Adv. 2020-2-3

[8]
Photocatalytic degradation of ibuprofen using titanium oxide: insights into the mechanism and preferential attack of radicals.

RSC Adv. 2021-8-16

[9]
Antimicrobial synergism and antibiofilm activity of amoxicillin loaded citric acid-magnesium ferrite nanocomposite: Effect of UV-illumination, and membrane leakage reaction mechanism.

Microb Pathog. 2022-3

[10]
A critical review of advanced nanotechnology and hybrid membrane based water recycling, reuse, and wastewater treatment processes.

Chemosphere. 2022-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索