文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

新型辣椒素包覆的钴铁氧体纳米催化剂具有良好的光催化和抗菌活性。

Promising photocatalytic and antimicrobial activity of novel capsaicin coated cobalt ferrite nanocatalyst.

机构信息

Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Galala City, 43511, Suez, Egypt.

Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt.

出版信息

Sci Rep. 2023 Apr 1;13(1):5353. doi: 10.1038/s41598-023-32323-y.


DOI:10.1038/s41598-023-32323-y
PMID:37005443
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10067836/
Abstract

In this study, CoFeO nanoparticles were prepared by the co-precipitation method then surface modified with Capsaicin (Capsicum annuum ssp.). The virgin CoFeO NPs and Capsaicin-coated CoFeO NPs (CPCF NPs) were characterized by XRD, FTIR, SEM, and TEM. The antimicrobial potential and photocatalytic degradation efficiencies of the prepared samples via Fuchsine basic (FB) were investigated. The results revealed that CoFeO NPs have spherical shapes and their diameter varied from 18.0 to 30.0 nm with an average particle size of 25.0 nm. Antimicrobial activity was tested on Gram-positive (S. aureusATCC 52923) and Gram-negative (E. coli ATCC 52922) by disk diffusion and broth dilution methods to determine the zone of inhibition (ZOI) and minimum inhibitory concentration (MIC), respectively. UV-assisted photocatalytic degradation of FB was examined. Various parameters affecting the photocatalytic efficiency such as pH, initial concentration of FB, and dose of nanocatalyst were studied. The in-vitro ZOI and MIC results verified that CPCF NPs were more active upon Gram-Positive S. aureus ATCC 52923 (23.0 mm ZOI and 0.625 μg/ml MIC) than Gram-Negative E. coli ATCC 52922 (17.0 mm ZOI and 1.250 μg/ml MIC). Results obtained from the photocatalytic activity indicated that the maximum FB removal achieving 94.6% in equilibrium was observed using 20.0 mg of CPCF NPS at pH 9.0. The synthesized CPCF NPs were effective in the removal of FB and also as potent antimicrobial agent against both Gram-positive and Gram-negative bacteria with potential medical and environmental applications.

摘要

在这项研究中,采用共沉淀法制备了 CoFeO 纳米粒子,然后用辣椒素(Capsicum annuum ssp.)进行表面修饰。对原始 CoFeO NPs 和辣椒素包覆的 CoFeO NPs(CPCF NPs)进行了 XRD、FTIR、SEM 和 TEM 表征。通过碱性藏红(FB)研究了所制备样品的抗菌潜力和光催化降解效率。结果表明,CoFeO NPs 具有球形形状,其直径在 18.0 到 30.0nm 之间,平均粒径为 25.0nm。通过圆盘扩散和肉汤稀释法对革兰氏阳性(S. aureus ATCC 52923)和革兰氏阴性(E. coli ATCC 52922)进行了抗菌活性测试,以分别确定抑菌圈(ZOI)和最小抑菌浓度(MIC)。考察了 FB 的紫外辅助光催化降解。研究了影响光催化效率的各种参数,如 pH、FB 的初始浓度和纳米催化剂的剂量。体外 ZOI 和 MIC 结果证实,CPCF NPs 对革兰氏阳性 S. aureus ATCC 52923 的活性更强(23.0mm ZOI 和 0.625μg/ml MIC),而对革兰氏阴性 E. coli ATCC 52922 的活性较弱(17.0mm ZOI 和 1.250μg/ml MIC)。光催化活性的结果表明,在 pH 9.0 下,使用 20.0mg 的 CPCF NPS 可达到 94.6%的最大 FB 去除率,达到平衡。合成的 CPCF NPs 可有效去除 FB,并且对革兰氏阳性和革兰氏阴性细菌均具有很强的抗菌作用,具有潜在的医疗和环境应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/c4feeea59aa1/41598_2023_32323_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/9a0fd8e90b90/41598_2023_32323_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/41f0a3c4f4dc/41598_2023_32323_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/02677ed54a6b/41598_2023_32323_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/3b07daa84f42/41598_2023_32323_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/ac970ef7ca5e/41598_2023_32323_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/3264da66e807/41598_2023_32323_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/ecbc2dc2bffd/41598_2023_32323_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/653f9f9f932a/41598_2023_32323_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/28d12e6dd757/41598_2023_32323_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/eec6263d1d9a/41598_2023_32323_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/5f96dbbb0992/41598_2023_32323_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/5e5544bd2313/41598_2023_32323_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/9a709bd7e81b/41598_2023_32323_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/baf0cfbb8c97/41598_2023_32323_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/9dab2de7881b/41598_2023_32323_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/c4feeea59aa1/41598_2023_32323_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/9a0fd8e90b90/41598_2023_32323_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/41f0a3c4f4dc/41598_2023_32323_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/02677ed54a6b/41598_2023_32323_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/3b07daa84f42/41598_2023_32323_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/ac970ef7ca5e/41598_2023_32323_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/3264da66e807/41598_2023_32323_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/ecbc2dc2bffd/41598_2023_32323_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/653f9f9f932a/41598_2023_32323_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/28d12e6dd757/41598_2023_32323_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/eec6263d1d9a/41598_2023_32323_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/5f96dbbb0992/41598_2023_32323_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/5e5544bd2313/41598_2023_32323_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/9a709bd7e81b/41598_2023_32323_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/baf0cfbb8c97/41598_2023_32323_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/9dab2de7881b/41598_2023_32323_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10067836/c4feeea59aa1/41598_2023_32323_Fig16_HTML.jpg

相似文献

[1]
Promising photocatalytic and antimicrobial activity of novel capsaicin coated cobalt ferrite nanocatalyst.

Sci Rep. 2023-4-1

[2]
Immobilized lipase enzyme on green synthesized magnetic nanoparticles using Psidium guava leaves for dye degradation and antimicrobial activities.

Sci Rep. 2024-4-17

[3]
Synthesis and characterization of AgO, CoFeO, GO, and their ternary composite for antibacterial activity.

Environ Sci Pollut Res Int. 2023-1

[4]
Antimicrobial synergism and antibiofilm activity of amoxicillin loaded citric acid-magnesium ferrite nanocomposite: Effect of UV-illumination, and membrane leakage reaction mechanism.

Microb Pathog. 2022-3

[5]
Photocatalytic, antimicrobial and antibiofilm activities of MgFeO magnetic nanoparticles.

Sci Rep. 2024-6-5

[6]
Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles.

Microb Pathog. 2018-11-28

[7]
Antimicrobial Efficacy of Biogenic Cobalt and Copper Nanoparticles against Pathogenic Isolates.

J Oleo Sci. 2022

[8]
Core/shell nanoparticles: Synthesis, investigation of antimicrobial potential and photocatalytic degradation of Rhodamine B.

J Photochem Photobiol B. 2019-12-3

[9]
Tragacanth gum-based copper oxide nanoparticles: Comprehensive characterization, antibiofilm, antimicrobial and photocatalytic potentials.

Int J Biol Macromol. 2024-5

[10]
Synthesis and evaluation of layered double hydroxide/doxycycline and cobalt ferrite/chitosan nanohybrid efficacy on gram positive and gram negative bacteria.

Mater Sci Eng C Mater Biol Appl. 2018-5-15

引用本文的文献

[1]
Nanomedicine: The Effective Role of Nanomaterials in Healthcare from Diagnosis to Therapy.

Pharmaceutics. 2025-7-30

[2]
Promising biomedical applications using superparamagnetic nanoparticles.

Eur J Med Res. 2025-6-2

[3]
Efficient removal of Remazol Red dye from aqueous solution using magnetic nickel ferrite nanoparticles synthesized via aqueous reflux.

Sci Rep. 2025-5-20

[4]
Enhanced anticancer activity of silver doped zinc oxide magnetic nanocarrier loaded with sorafenib for hepatocellular carcinoma treatment.

Sci Rep. 2024-7-5

[5]
Photocatalytic, antimicrobial and antibiofilm activities of MgFeO magnetic nanoparticles.

Sci Rep. 2024-6-5

[6]
Immobilized lipase enzyme on green synthesized magnetic nanoparticles using Psidium guava leaves for dye degradation and antimicrobial activities.

Sci Rep. 2024-4-17

[7]
New Attempts to Inhibit Methicillin-Resistant Biofilm? A Combination of Daptomycin and Azithromycin.

Infect Drug Resist. 2023-11-6

本文引用的文献

[1]
Assessment of catalytic, antimicrobial and molecular docking analysis of starch-grafted polyacrylic acid doped BaO nanostructures.

Int J Biol Macromol. 2023-3-1

[2]
Synthesis of Al/starch co-doped in CaO nanoparticles for enhanced catalytic and antimicrobial activities: experimental and DFT approaches.

RSC Adv. 2022-11-9

[3]
Synthesis and applicability of reduced graphene oxide/porphyrin nanocomposite as photocatalyst for waste water treatment and medical applications.

Sci Rep. 2022-10-12

[4]
A controllable one-pot hydrothermal synthesis of spherical cobalt ferrite nanoparticles: synthesis, characterization, and optical properties.

RSC Adv. 2022-9-5

[5]
Fabrication of Capsaicin Loaded Nanocrystals: Physical Characterizations and In Vivo Evaluation.

Pharmaceutics. 2021-6-7

[6]
The photocatalytic performance and structural characteristics of nickel cobalt ferrite nanocomposites after doping with bismuth.

J Colloid Interface Sci. 2021-7-15

[7]
Size and Chemistry Controlled Cobalt-Ferrite Nanoparticles and Their Anti-proliferative Effect against the MCF-7 Breast Cancer Cells.

ACS Biomater Sci Eng. 2016-12-12

[8]
Nanostructured Mg substituted Mn-Zn ferrites: A magnetic recyclable catalyst for outstanding photocatalytic and antimicrobial potentials.

J Hazard Mater. 2020-11-15

[9]
Carbon-dot-loaded CoNiFeO; x = 0.9/SiO/TiO nanocomposite with enhanced photocatalytic and antimicrobial potential: An engineered nanocomposite for wastewater treatment.

Sci Rep. 2020-7-13

[10]
Synthesis of Magnetic Ferrite Nanoparticles with High Hyperthermia Performance via a Controlled Co-Precipitation Method.

Nanomaterials (Basel). 2019-8-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索