Suppr超能文献

基于堆叠近似核极限学习机的自适应软传感器在间歇过程中的应用

Adaptive soft sensor using stacking approximate kernel based BLS for batch processes.

作者信息

Zhao Jinlong, Yang Mingyi, Xu Zhigang, Wang Junyi, Yang Xiao, Wu Xinguang

机构信息

Chinese Academy of Sciences, Shenyang Institute of Automation, Shenyang, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

Sci Rep. 2024 Jun 4;14(1):12817. doi: 10.1038/s41598-024-63597-5.

Abstract

To deal with the highly nonlinear and time-varying characteristics of Batch Process, a model named adaptive stacking approximate kernel based broad learning system is proposed in this paper. This model innovatively introduces the approximate kernel based broad learning system (AKBLS) algorithm and the Adaptive Stacking framework, giving it strong nonlinear fitting ability, excellent generalization ability, and adaptive ability. The Broad Learning System (BLS) is known for its shorter training time for effective nonlinear processing, but the uncertainty brought by its double random mapping results in poor resistance to noisy data and unpredictable impact on performance. To address this issue, this paper proposes an AKBLS algorithm that reduces uncertainty, eliminates redundant features, and improves prediction accuracy by projecting feature nodes into the kernel space. It also significantly reduces the computation time of the kernel matrix by searching for approximate kernels to enhance its ability in industrial online applications. Extensive comparative experiments on various public datasets of different sizes validate this. The Adaptive Stacking framework utilizes the Stacking ensemble learning method, which integrates predictions from multiple AKBLS models using a meta-learner to improve generalization. Additionally, by employing the moving window method-where a fixed-length window slides through the database over time-the model gains adaptive ability, allowing it to better respond to gradual changes in industrial Batch Process. Experiments on a substantial dataset of penicillin simulations demonstrate that the proposed model significantly improves predictive accuracy compared to other common algorithms.

摘要

针对间歇过程的高度非线性和时变特性,本文提出了一种基于自适应堆叠近似核的广义回归神经网络模型。该模型创新性地引入了基于近似核的广义回归神经网络(AKBLS)算法和自适应堆叠框架,使其具有强大的非线性拟合能力、出色的泛化能力和自适应能力。广义回归神经网络(BLS)以其在有效进行非线性处理时训练时间较短而闻名,但其双随机映射带来的不确定性导致其对噪声数据的抗性较差,对性能产生不可预测的影响。为了解决这个问题,本文提出了一种AKBLS算法,该算法通过将特征节点投影到核空间来减少不确定性、消除冗余特征并提高预测精度。通过寻找近似核,它还显著减少了核矩阵的计算时间,以增强其在工业在线应用中的能力。在各种不同大小的公共数据集上进行的大量对比实验验证了这一点。自适应堆叠框架利用堆叠集成学习方法,使用元学习器整合多个AKBLS模型的预测结果以提高泛化能力。此外,通过采用移动窗口方法(固定长度的窗口随时间在数据库中滑动),该模型获得了自适应能力,使其能够更好地应对工业间歇过程中的渐变。在大量青霉素模拟数据集上的实验表明,与其他常见算法相比,所提出的模型显著提高了预测精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc0d/11150258/90f4b06950cf/41598_2024_63597_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验