IEEE Trans Neural Netw Learn Syst. 2018 Jan;29(1):10-24. doi: 10.1109/TNNLS.2017.2716952. Epub 2017 Jul 21.
Broad Learning System (BLS) that aims to offer an alternative way of learning in deep structure is proposed in this paper. Deep structure and learning suffer from a time-consuming training process because of a large number of connecting parameters in filters and layers. Moreover, it encounters a complete retraining process if the structure is not sufficient to model the system. The BLS is established in the form of a flat network, where the original inputs are transferred and placed as "mapped features" in feature nodes and the structure is expanded in wide sense in the "enhancement nodes." The incremental learning algorithms are developed for fast remodeling in broad expansion without a retraining process if the network deems to be expanded. Two incremental learning algorithms are given for both the increment of the feature nodes (or filters in deep structure) and the increment of the enhancement nodes. The designed model and algorithms are very versatile for selecting a model rapidly. In addition, another incremental learning is developed for a system that has been modeled encounters a new incoming input. Specifically, the system can be remodeled in an incremental way without the entire retraining from the beginning. Satisfactory result for model reduction using singular value decomposition is conducted to simplify the final structure. Compared with existing deep neural networks, experimental results on the Modified National Institute of Standards and Technology database and NYU NORB object recognition dataset benchmark data demonstrate the effectiveness of the proposed BLS.
本文提出了一种旨在提供深度学习结构替代学习方法的广泛学习系统(BLS)。由于滤波器和层中的连接参数数量众多,深度结构和学习会遭受耗时的训练过程。此外,如果结构不足以对系统进行建模,则会遇到完整的重新训练过程。BLS 以平面网络的形式建立,其中原始输入被传输并作为“映射特征”放置在特征节点中,并且结构在“增强节点”中以广义方式扩展。如果网络需要扩展,则为快速重塑提供了增量学习算法,而无需重新训练过程。对于特征节点(或深度结构中的滤波器)的增量和增强节点的增量,给出了两种增量学习算法。所设计的模型和算法非常通用,可用于快速选择模型。此外,还为已经建模的系统开发了另一种增量学习算法,以便在遇到新传入输入时进行系统重塑。具体来说,系统可以以增量方式进行重塑,而无需从头开始进行整个重新训练。使用奇异值分解进行模型简化的实验结果表明,该方法可以有效地简化最终结构。与现有的深度神经网络相比,在修改后的国家标准与技术研究所数据库和纽约大学诺兰对象识别数据集基准数据上的实验结果证明了所提出的 BLS 的有效性。