Suppr超能文献

使用六种机器学习算法开发带状疱疹后神经痛预测模型及相应评分表:一项回顾性研究

Development of a Prediction Model and Corresponding Scoring Table for Postherpetic Neuralgia Using Six Machine Learning Algorithms: A Retrospective Study.

作者信息

Lin Zheng, Yu Lu-Yan, Pan Si-Yi, Cao Yi, Lin Ping

机构信息

First Clinical Medical College, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310006, Zhejiang, China.

The First Affiliated Hospital, Zhejiang Chinese Medical University, 54, Post and Circuit Road, Shangcheng District, Hangzhou, 310054, Zhejiang, China.

出版信息

Pain Ther. 2024 Aug;13(4):883-907. doi: 10.1007/s40122-024-00612-7. Epub 2024 Jun 4.

Abstract

INTRODUCTION

Postherpetic neuralgia (PHN), a complication of herpes zoster, significantly impacts the quality of life of affected patients. Research indicates that early intervention for pain can reduce the occurrence or severity of PHN. This study aims to develop a predictive model and scoring table to identify patients at risk of developing PHN following acute herpetic neuralgia, facilitating informed clinical decision-making.

METHODS

We conducted a retrospective review of 524 hospitalized patients with herpes zoster at The First Affiliated Hospital of Zhejiang Chinese Medical University from December 2020 to December 2023 and classified them according to whether they had PHN, collecting a comprehensive set of 30 patient characteristics and disease-related indicators, 5 comorbidity indicators, 2 disease score values, and 10 serological indicators. Relevant features associated with PHN were identified using the least absolute shrinkage and selection operator (LASSO). Then, the patients were divided into a training set and a test set in a 4:1 ratio, with comparability tested using univariate analysis. Six models were established in the training set using machine learning methods: support vector machines, logistic regression, random forest, k-nearest neighbor, gradient boosting, and neural network. The performance of these models was evaluated in the test set, and a nomogram based on logistic regression was used to create a PHN prediction score table.

RESULTS

Eight non-zero characteristic variables selected from the LASSO regression results were included in the model, including age [area under the curve (AUC) = 0.812, p < 0.001], Numerical Rating Scale (NRS) (AUC = 0.792, p < 0.001), receiving treatment time (AUC = 0.612, p < 0.001), rash recovery time (AUC = 0.680, p < 0.001), history of malignant tumor (AUC = 0.539, p < 0.001), history of diabetes (AUC = 0.638, p < 0.001), varicella-zoster virus immunoglobulin M (AUC = 0.620, p < 0.001), and serum nerve-specific enolase (AUC = 0.659, p < 0,001). The gradient boosting model outperformed other classifier models on the test set with an AUC of 0.931, 95% confidence interval (CI) (0.882-0.980), accuracy of 0.886 (95% CI 0.809-0.940). In the test set, our predictive scoring table achieved an AUC of 0.820 (95% CI 0.869-0.970) with accuracy of 0.790 (95% CI 0.700-0.864).

CONCLUSION

This study presents a methodology for predicting the development of postherpetic neuralgia in shingles patients by analyzing historical case data, employing various machine learning techniques, and selecting the optimal model through comparative analysis. In addition, a logistic regression model has been used to create a scoring table for predicting the postherpetic neuralgia.

摘要

引言

带状疱疹后神经痛(PHN)是带状疱疹的一种并发症,严重影响患者的生活质量。研究表明,对疼痛进行早期干预可降低PHN的发生率或严重程度。本研究旨在建立一个预测模型和评分表,以识别急性带状疱疹后发生PHN的风险患者,为临床决策提供依据。

方法

我们对2020年12月至2023年12月在浙江中医药大学附属第一医院住院的524例带状疱疹患者进行了回顾性研究,并根据是否患有PHN对他们进行分类,收集了30项患者特征和疾病相关指标、5项合并症指标、2项疾病评分值和10项血清学指标。使用最小绝对收缩和选择算子(LASSO)识别与PHN相关的相关特征。然后,将患者按4:1的比例分为训练集和测试集,使用单因素分析检验可比性。在训练集中使用机器学习方法建立了六个模型:支持向量机、逻辑回归、随机森林、k近邻、梯度提升和神经网络。在测试集中评估这些模型的性能,并使用基于逻辑回归的列线图创建PHN预测评分表。

结果

模型纳入了从LASSO回归结果中选择的八个非零特征变量,包括年龄[曲线下面积(AUC)=0.812,p<0.001]、数字评分量表(NRS)(AUC=0.792,p<0.001)、接受治疗时间(AUC=0.612,p<0.001)、皮疹恢复时间(AUC=0.680,p<0.001)、恶性肿瘤病史(AUC=0.539,p<0.001)、糖尿病病史(AUC=0.638,p<0.001)、水痘-带状疱疹病毒免疫球蛋白M(AUC=0.620,p<0.001)和血清神经特异性烯醇化酶(AUC=0.6

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a2e/11254897/f6c03b5c992b/40122_2024_612_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验