Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, China.
Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
Biophys J. 2024 Jul 2;123(13):1869-1881. doi: 10.1016/j.bpj.2024.05.033. Epub 2024 Jun 4.
Cell mechanics are pivotal in regulating cellular activities, diseases progression, and cancer development. However, the understanding of how cellular viscoelastic properties vary in physiological and pathological stimuli remains scarce. Here, we develop a hybrid self-similar hierarchical theory-microrheology approach to accurately and efficiently characterize cellular viscoelasticity. Focusing on two key cell types associated with livers fibrosis-the capillarized liver sinusoidal endothelial cells and activated hepatic stellate cells-we uncover a universal two-stage power-law rheology characterized by two distinct exponents, α and α. The mechanical profiles derived from both exponents exhibit significant potential for discriminating among diverse cells. This finding suggests a potential common dynamic creep characteristic across biological systems, extending our earlier observations in soft tissues. Using a tailored hierarchical model for cellular mechanical structures, we discern significant variations in the viscoelastic properties and their distribution profiles across different cell types and states from the cytoplasm (elastic stiffness E and viscosity η), to a single cytoskeleton fiber (elastic stiffness E), and then to the cell level (transverse expansion stiffness E). Importantly, we construct a logistic-regression-based machine-learning model using the dynamic parameters that outperforms conventional cell-stiffness-based classifiers in assessing cell states, achieving an area under the curve of 97% vs. 78%. Our findings not only advance a robust framework for monitoring intricate cell dynamics but also highlight the crucial role of cellular viscoelasticity in discerning cell states across a spectrum of liver diseases and prognosis, offering new avenues for developing diagnostic and therapeutic strategies based on cellular viscoelasticity.
细胞力学在调节细胞活动、疾病进展和癌症发展方面起着关键作用。然而,对于细胞粘弹性如何在生理和病理刺激下变化,人们的理解仍然有限。在这里,我们开发了一种混合的自相似层次理论-微流变学方法,以准确有效地描述细胞的粘弹性。我们专注于两种与肝脏纤维化相关的关键细胞类型——毛细血管化的肝窦内皮细胞和活化的肝星状细胞,揭示了一种普遍的两阶段幂律流变学,其特征是两个不同的指数,α和α。从这两个指数得出的力学曲线在区分不同细胞方面具有显著的潜力。这一发现表明,在生物系统中可能存在一种共同的动态蠕变特征,这扩展了我们之前在软组织中观察到的结果。使用针对细胞力学结构的定制层次模型,我们发现不同细胞类型和状态之间的粘弹性特性及其分布曲线存在显著差异,从细胞质(弹性刚度 E 和粘性η)到单个细胞骨架纤维(弹性刚度 E),再到细胞水平(横向扩展刚度 E)。重要的是,我们使用基于动态参数的逻辑回归机器学习模型构建了一个模型,该模型在评估细胞状态方面优于传统的基于细胞刚度的分类器,曲线下面积达到 97%,而传统的基于细胞刚度的分类器为 78%。我们的发现不仅为监测复杂的细胞动力学提供了一个稳健的框架,还强调了细胞粘弹性在辨别一系列肝脏疾病和预后中细胞状态的关键作用,为基于细胞粘弹性的诊断和治疗策略的发展提供了新的途径。