Suppr超能文献

稳健自回归建模及其诊断分析与新冠疫情相关应用

Robust autoregressive modeling and its diagnostic analytics with a COVID-19 related application.

作者信息

Liu Yonghui, Wang Jing, Leiva Víctor, Tapia Alejandra, Tan Wei, Liu Shuangzhe

机构信息

School of Statistics and Information, Shanghai University of International Business and Economics, Shanghai, People's Republic of China.

School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.

出版信息

J Appl Stat. 2023 Apr 19;51(7):1318-1343. doi: 10.1080/02664763.2023.2198178. eCollection 2024.

Abstract

Autoregressive models in time series are useful in various areas. In this article, we propose a skew-t autoregressive model. We estimate its parameters using the expectation-maximization (EM) method and develop the influence methodology based on local perturbations for its validation. We obtain the normal curvatures for four perturbation strategies to identify influential observations, and then to assess their performance through Monte Carlo simulations. An example of financial data analysis is presented to study daily log-returns for Brent crude futures and investigate possible impact by the COVID-19 pandemic.

摘要

时间序列中的自回归模型在各个领域都很有用。在本文中,我们提出了一种偏态t自回归模型。我们使用期望最大化(EM)方法估计其参数,并基于局部扰动开发影响方法以进行验证。我们获得了四种扰动策略的法曲率以识别有影响的观测值,然后通过蒙特卡罗模拟评估它们的性能。给出了一个金融数据分析的例子,以研究布伦特原油期货的每日对数收益率,并调查新冠疫情可能产生的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e03/11146256/ae550e927236/CJAS_A_2198178_F0001_OC.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验