Ho Hsiu J, Lin Tsung-I
Department of Applied Mathematics, National Chung Hsing University, Taichung 402, Taiwan.
Biom J. 2010 Aug;52(4):449-69. doi: 10.1002/bimj.200900184.
We consider an extension of linear mixed models by assuming a multivariate skew t distribution for the random effects and a multivariate t distribution for the error terms. The proposed model provides flexibility in capturing the effects of skewness and heavy tails simultaneously among continuous longitudinal data. We present an efficient alternating expectation-conditional maximization (AECM) algorithm for the computation of maximum likelihood estimates of parameters on the basis of two convenient hierarchical formulations. The techniques for the prediction of random effects and intermittent missing values under this model are also investigated. Our methodologies are illustrated through an application to schizophrenia data.
我们通过假设随机效应服从多元偏态t分布且误差项服从多元t分布来考虑线性混合模型的扩展。所提出的模型在捕捉连续纵向数据中同时存在的偏度和重尾效应方面具有灵活性。我们基于两种便捷的分层公式,提出了一种用于计算参数最大似然估计的高效交替期望条件最大化(AECM)算法。还研究了该模型下随机效应和间歇性缺失值的预测技术。通过对精神分裂症数据的应用来说明我们的方法。