文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在退伍军人事务部高可靠性医疗保健组织中实施可信人工智能。

Implementing Trustworthy AI in VA High Reliability Health Care Organizations.

作者信息

Isaacks David B, Borkowski Andrew A

机构信息

Veterans Affairs Sunshine Healthcare Network, Tampa, Florida.

University of South Florida Morsani College of Medicine, Tampa.

出版信息

Fed Pract. 2024 Feb;41(2):40-43. doi: 10.12788/fp.0454. Epub 2024 Feb 15.


DOI:10.12788/fp.0454
PMID:38835927
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11147434/
Abstract

BACKGROUND: Artificial intelligence (AI) has great potential to improve health care quality, safety, efficiency, and access. However, the widespread adoption of health care AI needs to catch up to other sectors. Challenges, including data limitations, misaligned incentives, and organizational obstacles, have hindered implementation. Strategic demonstrations, partnerships, aligned incentives, and continued investment are needed to enable responsible adoption of AI. High reliability health care organizations offer insights into safely implementing major initiatives through frameworks like the Patient Safety Adoption Framework, which provides practical guidance on leadership, culture, process, measurement, and person-centeredness to successfully adopt safety practices. High reliability health care organizations ensure consistently safe and high quality care through a culture focused on reliability, accountability, and learning from errors and near misses. OBSERVATIONS: The Veterans Health Administration applied a high reliability health care model to instill safety principles and improve outcomes. As the use of AI becomes more widespread, ensuring its ethical development is crucial to avoiding new risks and harm. The US Department of Veterans Affairs National AI Institute proposed a Trustworthy AI Framework tailored for federal health care with 6 principles: purposeful, effective and safe, secure and private, fair and equitable, transparent and explainable, and accountable and monitored. This aims to manage risks and build trust. CONCLUSIONS: Combining these AI principles with high reliability safety principles can enable successful, trustworthy AI that improves health care quality, safety, efficiency, and access. Overcoming AI adoption barriers will require strategic efforts, partnerships, and investment to implement AI responsibly, safely, and equitably based on the health care context.

摘要

背景:人工智能(AI)在提高医疗质量、安全性、效率和可及性方面具有巨大潜力。然而,医疗保健领域人工智能的广泛应用仍需迎头赶上其他行业。包括数据限制、激励措施不一致以及组织障碍在内的挑战阻碍了其实施。需要进行战略示范、建立伙伴关系、调整激励措施并持续投资,以实现对人工智能的负责任采用。高可靠性医疗保健组织通过诸如患者安全采用框架等框架,为安全实施重大举措提供了见解,该框架在领导力、文化、流程、衡量以及以患者为中心等方面提供了切实可行的指导,以成功采用安全实践。高可靠性医疗保健组织通过一种注重可靠性、问责制以及从错误和未遂事件中吸取教训的文化,确保始终提供安全且高质量的护理。

观察结果:退伍军人健康管理局应用了高可靠性医疗保健模式来灌输安全原则并改善结果。随着人工智能的使用日益广泛,确保其符合道德规范的发展对于避免新的风险和危害至关重要。美国退伍军人事务部国家人工智能研究所提出了一个专门为联邦医疗保健量身定制的可信人工智能框架,该框架有6项原则:有目的、有效且安全、安全且私密、公平且公正、透明且可解释、可问责且受监督。这旨在管理风险并建立信任。

结论:将这些人工智能原则与高可靠性安全原则相结合,可以实现成功、可信的人工智能,从而提高医疗质量、安全性、效率和可及性。克服人工智能采用障碍需要战略努力、伙伴关系和投资,以便根据医疗保健背景负责任、安全且公平地实施人工智能。

相似文献

[1]
Implementing Trustworthy AI in VA High Reliability Health Care Organizations.

Fed Pract. 2024-2

[2]
Ethical Applications of Artificial Intelligence: Evidence From Health Research on Veterans.

JMIR Med Inform. 2021-6-2

[3]
Fulfilling the Promise of Artificial Intelligence in the Health Sector: Let's Get Real.

Value Health. 2022-3

[4]
Generative AI in healthcare: an implementation science informed translational path on application, integration and governance.

Implement Sci. 2024-3-15

[5]
Theory of trust and acceptance of artificial intelligence technology (TrAAIT): An instrument to assess clinician trust and acceptance of artificial intelligence.

J Biomed Inform. 2023-12

[6]
Risk management frameworks for human health and environmental risks.

J Toxicol Environ Health B Crit Rev. 2003

[7]
Ethical funding for trustworthy AI: proposals to address the responsibilities of funders to ensure that projects adhere to trustworthy AI practice.

AI Ethics. 2022

[8]
Accelerating the Appropriate Adoption of Artificial Intelligence in Health Care: Protocol for a Multistepped Approach.

JMIR Res Protoc. 2021-10-6

[9]
Implications of Large Language Models for Quality and Efficiency of Neurologic Care: Emerging Issues in Neurology.

Neurology. 2024-6-11

[10]
Trustworthy artificial intelligence and ethical design: public perceptions of trustworthiness of an AI-based decision-support tool in the context of intrapartum care.

BMC Med Ethics. 2023-6-20

引用本文的文献

[1]
Multiagent AI Systems in Health Care: Envisioning Next-Generation Intelligence.

Fed Pract. 2025-5

[2]
Unlocking precision medicine: clinical applications of integrating health records, genetics, and immunology through artificial intelligence.

J Biomed Sci. 2025-2-7

本文引用的文献

[1]
Applications of ChatGPT and Large Language Models in Medicine and Health Care: Benefits and Pitfalls.

Fed Pract. 2023-6

[2]
Artificial Intelligence in U.S. Health Care Delivery.

N Engl J Med. 2023-7-27

[3]
The Patient Safety Adoption Framework: A Practical Framework to Bridge the Know-Do Gap.

J Patient Saf. 2023-6-1

[4]
High Reliability Organization Principles Improve VA Workplace Burnout: The Truman THRIVE2 Model.

Am J Med Qual.

[5]
A High-Reliability Organization Framework for Health Care: A Multiyear Implementation Strategy and Associated Outcomes.

J Patient Saf. 2022-1-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索