文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

医疗保健中的多智能体人工智能系统:展望下一代智能。

Multiagent AI Systems in Health Care: Envisioning Next-Generation Intelligence.

作者信息

Borkowski Andrew A, Ben-Ari Alon

机构信息

Veterans Affairs Sunshine Healthcare Network, Tampa, Florida.

Veterans Affairs Northern California Health Care System, Sacramento.

出版信息

Fed Pract. 2025 May;42(5):188-194. doi: 10.12788/fp.0589. Epub 2025 May 14.


DOI:10.12788/fp.0589
PMID:40831649
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12360800/
Abstract

BACKGROUND: Limited staff, rising costs, and regulatory oversight, coupled with the need to achieve clinical endpoints and improve access to care, has made scaling health care operations challenging. This article explores the emerging paradigm of multiagent artificial intelligence (AI) systems in health care, which represent a significant leap beyond traditional large language models. OBSERVATIONS: This analysis reviews the potential of multiagent AI systems to revolutionize patient care, streamline administrative processes, and support complex clinical decision-making. It describes a hypothetical sepsis management system comprising 7 specialized AI agents, with each agent handling specific aspects of patient care from data collection and diagnosis to treatment recommendations and resource management. Additional applications in chronic disease management and hospital patient flow optimization are also examined. The technical implementation of these systems is discussed, including the use of advanced large language models, interagent quality control measures, guardrail implementation, self-reflection mechanisms, integration with electronic health records, and the importance of explainable AI in ensuring decision transparency. Potential benefits include enhanced diagnostic accuracy and personalized treatment plans. Challenges remain related to data quality assurance, workflow integration, and ethical considerations. Future directions for AI include the integration of internet-enabled devices and the development of more sophisticated natural language interfaces. CONCLUSIONS: This article underscores the transformative potential of multiagent AI systems in health care while emphasizing the importance of rigorous validation, ethical oversight, and a patient-centered approach in their development and implementation.

摘要

背景:人员有限、成本上升和监管监督,再加上实现临床终点和改善医疗服务可及性的需求,使得扩大医疗保健业务具有挑战性。本文探讨了医疗保健中多智能体人工智能(AI)系统这一新兴范式,它代表了超越传统大语言模型的重大飞跃。 观察:本分析回顾了多智能体AI系统在变革患者护理、简化行政流程以及支持复杂临床决策方面的潜力。它描述了一个假设的脓毒症管理系统,该系统由7个专门的AI智能体组成,每个智能体处理患者护理的特定方面,从数据收集、诊断到治疗建议和资源管理。还研究了在慢性病管理和医院患者流程优化方面的其他应用。讨论了这些系统的技术实施,包括使用先进的大语言模型、智能体间质量控制措施、护栏实施、自我反思机制、与电子健康记录的集成以及可解释AI在确保决策透明度方面的重要性。潜在益处包括提高诊断准确性和制定个性化治疗方案。在数据质量保证、工作流程整合和伦理考量方面仍存在挑战。AI的未来发展方向包括启用互联网设备的集成以及开发更复杂的自然语言界面。 结论:本文强调了多智能体AI系统在医疗保健中的变革潜力,同时强调了在其开发和实施过程中进行严格验证、伦理监督以及以患者为中心方法的重要性。

相似文献

[1]
Multiagent AI Systems in Health Care: Envisioning Next-Generation Intelligence.

Fed Pract. 2025-5

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Trust in Artificial Intelligence-Based Clinical Decision Support Systems Among Health Care Workers: Systematic Review.

J Med Internet Res. 2025-7-29

[4]
AI Scribes in Health Care: Balancing Transformative Potential With Responsible Integration.

JMIR Med Inform. 2025-8-1

[5]
Designing Clinical Decision Support Systems (CDSS)-A User-Centered Lens of the Design Characteristics, Challenges, and Implications: Systematic Review.

J Med Internet Res. 2025-6-20

[6]
Integrating artificial intelligence in healthcare: applications, challenges, and future directions.

Future Sci OA. 2025-12

[7]
Stakeholder Perspectives on Trustworthy AI for Parkinson Disease Management Using a Cocreation Approach: Qualitative Exploratory Study.

J Med Internet Res. 2025-8-6

[8]
Toward a responsible future: recommendations for AI-enabled clinical decision support.

J Am Med Inform Assoc. 2024-11-1

[9]
Stench of Errors or the Shine of Potential: The Challenge of (Ir)Responsible Use of ChatGPT in Speech-Language Pathology.

Int J Lang Commun Disord. 2025

[10]
Improving AI-Based Clinical Decision Support Systems and Their Integration Into Care From the Perspective of Experts: Interview Study Among Different Stakeholders.

JMIR Med Inform. 2025-7-7

本文引用的文献

[1]
Implementing Trustworthy AI in VA High Reliability Health Care Organizations.

Fed Pract. 2024-2

[2]
AI- and IoT-Enabled Solutions for Healthcare.

Sensors (Basel). 2024-4-19

[3]
Randomised controlled trials evaluating artificial intelligence in clinical practice: a scoping review.

Lancet Digit Health. 2024-5

[4]
Machine Learning for Sepsis Prediction: Prospects and Challenges.

Clin Chem. 2024-3-2

[5]
Revolutionizing Digital Pathology With the Power of Generative Artificial Intelligence and Foundation Models.

Lab Invest. 2023-11

[6]
Machine learning explainability in nasopharyngeal cancer survival using LIME and SHAP.

Sci Rep. 2023-6-2

[7]
Artificial intelligence assists precision medicine in cancer treatment.

Front Oncol. 2023-1-4

[8]
Toward Foundational Deep Learning Models for Medical Imaging in the New Era of Transformer Networks.

Radiol Artif Intell. 2022-11-2

[9]
Establishing a Hospital Artificial Intelligence Committee to Improve Patient Care.

Fed Pract. 2022-8

[10]
Machine learning and automatic ARIMA/Prophet models-based forecasting of COVID-19: methodology, evaluation, and case study in SAARC countries.

Stoch Environ Res Risk Assess. 2023

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索