Borkowski Andrew A, Ben-Ari Alon
Veterans Affairs Sunshine Healthcare Network, Tampa, Florida.
Veterans Affairs Northern California Health Care System, Sacramento.
Fed Pract. 2025 May;42(5):188-194. doi: 10.12788/fp.0589. Epub 2025 May 14.
BACKGROUND: Limited staff, rising costs, and regulatory oversight, coupled with the need to achieve clinical endpoints and improve access to care, has made scaling health care operations challenging. This article explores the emerging paradigm of multiagent artificial intelligence (AI) systems in health care, which represent a significant leap beyond traditional large language models. OBSERVATIONS: This analysis reviews the potential of multiagent AI systems to revolutionize patient care, streamline administrative processes, and support complex clinical decision-making. It describes a hypothetical sepsis management system comprising 7 specialized AI agents, with each agent handling specific aspects of patient care from data collection and diagnosis to treatment recommendations and resource management. Additional applications in chronic disease management and hospital patient flow optimization are also examined. The technical implementation of these systems is discussed, including the use of advanced large language models, interagent quality control measures, guardrail implementation, self-reflection mechanisms, integration with electronic health records, and the importance of explainable AI in ensuring decision transparency. Potential benefits include enhanced diagnostic accuracy and personalized treatment plans. Challenges remain related to data quality assurance, workflow integration, and ethical considerations. Future directions for AI include the integration of internet-enabled devices and the development of more sophisticated natural language interfaces. CONCLUSIONS: This article underscores the transformative potential of multiagent AI systems in health care while emphasizing the importance of rigorous validation, ethical oversight, and a patient-centered approach in their development and implementation.
背景:人员有限、成本上升和监管监督,再加上实现临床终点和改善医疗服务可及性的需求,使得扩大医疗保健业务具有挑战性。本文探讨了医疗保健中多智能体人工智能(AI)系统这一新兴范式,它代表了超越传统大语言模型的重大飞跃。 观察:本分析回顾了多智能体AI系统在变革患者护理、简化行政流程以及支持复杂临床决策方面的潜力。它描述了一个假设的脓毒症管理系统,该系统由7个专门的AI智能体组成,每个智能体处理患者护理的特定方面,从数据收集、诊断到治疗建议和资源管理。还研究了在慢性病管理和医院患者流程优化方面的其他应用。讨论了这些系统的技术实施,包括使用先进的大语言模型、智能体间质量控制措施、护栏实施、自我反思机制、与电子健康记录的集成以及可解释AI在确保决策透明度方面的重要性。潜在益处包括提高诊断准确性和制定个性化治疗方案。在数据质量保证、工作流程整合和伦理考量方面仍存在挑战。AI的未来发展方向包括启用互联网设备的集成以及开发更复杂的自然语言界面。 结论:本文强调了多智能体AI系统在医疗保健中的变革潜力,同时强调了在其开发和实施过程中进行严格验证、伦理监督以及以患者为中心方法的重要性。
JMIR Med Inform. 2025-8-1
J Am Med Inform Assoc. 2024-11-1
Sensors (Basel). 2024-4-19
Lancet Digit Health. 2024-5
Clin Chem. 2024-3-2
Front Oncol. 2023-1-4
Radiol Artif Intell. 2022-11-2