Suppr超能文献

控制折叠:软质折纸机器人中的本体感受反馈

Controlling the fold: proprioceptive feedback in a soft origami robot.

作者信息

Hanson Nathaniel, Mensah Immanuel Ampomah, Roberts Sonia F, Healey Jessica, Wu Celina, Dorsey Kristen L

机构信息

Institute for Experiential Robotics, Northeastern University, Boston, MA, United States.

Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT, United States.

出版信息

Front Robot AI. 2024 May 21;11:1396082. doi: 10.3389/frobt.2024.1396082. eCollection 2024.

Abstract

We demonstrate proprioceptive feedback control of a one degree of freedom soft, pneumatically actuated origami robot and an assembly of two robots into a two degree of freedom system. The base unit of the robot is a 41 mm long, 3-D printed Kresling-inspired structure with six sets of sidewall folds and one degree of freedom. Pneumatic actuation, provided by negative fluidic pressure, causes the robot to contract. Capacitive sensors patterned onto the robot provide position estimation and serve as input to a feedback controller. Using a finite element approach, the electrode shapes are optimized for sensitivity at larger (more obtuse) fold angles to improve control across the actuation range. We demonstrate stable position control through discrete-time proportional-integral-derivative (PID) control on a single unit Kresling robot via a series of static set points to 17 mm, dynamic set point stepping, and sinusoidal signal following, with error under 3 mm up to 10 mm contraction. We also demonstrate a two-unit Kresling robot with two degree of freedom extension and rotation control, which has error of 1.7 mm and 6.1°. This work contributes optimized capacitive electrode design and the demonstration of closed-loop feedback position control without visual tracking as an input. This approach to capacitance sensing and modeling constitutes a major step towards proprioceptive state estimation and feedback control in soft origami robotics.

摘要

我们展示了一个单自由度软质气动折纸机器人的本体感觉反馈控制,以及将两个机器人组装成一个双自由度系统。该机器人的基本单元是一个41毫米长、受克雷斯林启发的3D打印结构,有六组侧壁褶皱和一个自由度。由负流体压力提供的气动驱动使机器人收缩。图案化在机器人上的电容式传感器提供位置估计,并作为反馈控制器的输入。使用有限元方法,电极形状针对较大(更钝角)折叠角度的灵敏度进行了优化,以改善整个驱动范围内的控制。我们通过离散时间比例积分微分(PID)控制,在单个单元的克雷斯林机器人上,通过一系列到17毫米的静态设定点、动态设定点步进和正弦信号跟踪,展示了稳定的位置控制,收缩10毫米时误差在3毫米以内。我们还展示了一个具有双自由度伸展和旋转控制的双单元克雷斯林机器人,其误差为1.7毫米和6.1°。这项工作贡献了优化的电容式电极设计,并展示了无需视觉跟踪作为输入的闭环反馈位置控制。这种电容传感和建模方法是软质折纸机器人本体感觉状态估计和反馈控制的重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23ad/11148277/b69a109ecbd7/frobt-11-1396082-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验