Macromolecular Science and Engineering, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States.
Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States.
ACS Appl Mater Interfaces. 2024 Jun 19;16(24):31864-31872. doi: 10.1021/acsami.4c08603. Epub 2024 Jun 5.
While polydopamine (PDA) possesses the surface-independent adhesion property of mussel-binding proteins, significant differences exist between them. Particularly, PDA's short and rigid backbone differs from the long and flexible protein sequence of mussel-binding proteins. Given that adhesion relies on achieving a conformal contact with large surface coverage, PDA has drawbacks as an adhesive. In our study, we investigated the roles of each building block of PDA to build a better understanding of their binding mechanisms. Initially, we anticipated that catecholamine oligomers form specific binding with substrates. However, our study showed that the universal adhesion of PDA is initiated by the solubility limit of growing oligomers by forming agglomerates, complemented by multiple binding modes of catechol. Notably, in the absence of amines, poly(catechol) either remained in solution or formed minor suspensions without any surface coating, underscoring the essential role of amines in the adhesion process by facilitating insoluble aggregate formation. To substantiate our findings, we induced poly(catechol) aggregation using quaternized poly(4-vinylpyridine) (qPVP), leading to subsequent surface adhesion upon agglomerate formation.
尽管聚多巴胺(PDA)具有贻贝类黏附蛋白的表面非依赖黏附特性,但两者之间仍存在显著差异。特别是,PDA 的短而刚性骨架与贻贝类黏附蛋白的长而灵活的蛋白质序列不同。鉴于黏附依赖于实现大的表面覆盖的共形接触,PDA 作为黏合剂存在缺点。在我们的研究中,我们研究了 PDA 的每个构建块的作用,以更好地理解它们的结合机制。最初,我们预计儿茶酚胺低聚物与底物形成特定的结合。然而,我们的研究表明,PDA 的普遍黏附是通过形成团聚物来达到生长低聚物的溶解度极限来启动的,儿茶酚的多种结合模式作为补充。值得注意的是,在没有胺的情况下,聚(儿茶酚)要么仍留在溶液中,要么形成没有任何表面涂层的少量悬浮液,这突出了胺在促进不溶性聚集体形成的黏附过程中的重要作用。为了证实我们的发现,我们使用季铵化聚(4-乙烯基吡啶)(qPVP)诱导聚(儿茶酚)聚集,从而在团聚体形成后导致随后的表面黏附。