Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
Institute of Molecular Biology, Hannover Medical School, Hannover, Germany.
Cardiovasc Res. 2024 Sep 21;120(11):1295-1311. doi: 10.1093/cvr/cvae118.
Understanding the molecular identity of human pluripotent stem cell (hPSC)-derived cardiac progenitors and mechanisms controlling their proliferation and differentiation is valuable for developmental biology and regenerative medicine.
Here, we show that chemical modulation of histone acetyl transferases (by IQ-1) and WNT (by CHIR99021) synergistically enables the transient and reversible block of directed cardiac differentiation progression on hPSCs. The resulting stabilized cardiovascular progenitors (SCPs) are characterized by ISL1pos/KI-67pos/NKX2-5neg expression. In the presence of the chemical inhibitors, SCPs maintain a proliferation quiescent state. Upon small molecules, removal SCPs resume proliferation and concomitant NKX2-5 up-regulation triggers cell-autonomous differentiation into cardiomyocytes. Directed differentiation of SCPs into the endothelial and smooth muscle lineages confirms their full developmental potential typical of bona fide cardiovascular progenitors. Single-cell RNA-sequencing-based transcriptional profiling of our in vitro generated human SCPs notably reflects the dynamic cellular composition of E8.25-E9.25 posterior second heart field of mouse hearts, hallmarked by nuclear receptor sub-family 2 group F member 2 expression. Investigating molecular mechanisms of SCP stabilization, we found that the cell-autonomously regulated retinoic acid and BMP signalling is governing SCP transition from quiescence towards proliferation and cell-autonomous differentiation, reminiscent of a niche-like behaviour.
The chemically defined and reversible nature of our stabilization approach provides an unprecedented opportunity to dissect mechanisms of cardiovascular progenitors' specification and reveal their cellular and molecular properties.
了解人类多能干细胞(hPSC)衍生的心脏祖细胞的分子特征以及控制其增殖和分化的机制,对于发育生物学和再生医学具有重要意义。
在这里,我们表明,组蛋白乙酰转移酶的化学调节(通过 IQ-1)和 WNT(通过 CHIR99021)协同作用,可暂时且可逆地阻止 hPSC 定向心脏分化的进展。由此产生的稳定心血管祖细胞(SCP)的特征是 ISL1pos/KI-67pos/NKX2-5neg 的表达。在化学抑制剂存在的情况下,SCP 保持增殖静止状态。当小分子去除时,SCP 恢复增殖,同时 NKX2-5 的上调触发细胞自主分化为心肌细胞。SCP 向内皮和平滑肌谱系的定向分化证实了它们具有典型的真正心血管祖细胞的完全发育潜力。基于单细胞 RNA 测序的我们体外生成的人类 SCP 的转录组学分析显著反映了小鼠心脏 E8.25-E9.25 后第二心脏场的动态细胞组成,其特征是核受体亚家族 2 组 F 成员 2 的表达。研究 SCP 稳定的分子机制时,我们发现自主调控的视黄酸和 BMP 信号通路控制 SCP 从静止状态向增殖和自主分化的转变,类似于龛样行为。
我们的稳定方法具有化学定义和可逆的特性,为剖析心血管祖细胞的特化机制以及揭示其细胞和分子特性提供了前所未有的机会。